Numerical and analytical investigations of the thermosolutal instability in a viscoelastic Rivlin-Ericksen fluid are carried out in the presence of a uniform vertical magnetic field to include the Hall current with a ...Numerical and analytical investigations of the thermosolutal instability in a viscoelastic Rivlin-Ericksen fluid are carried out in the presence of a uniform vertical magnetic field to include the Hall current with a uniform angular velocity in a porous medium. For stationary convection, the stable solute gradient parameter and the rota- tion have stabilizing effects on the system, whereas the magnetic field and the medium permeability have stabilizing or destabilizing effects on the system under certain condi- tions. The Hall current in the presence of rotation has stabilizing effects for sufficiently large Taylor numbers, whereas in the absence of rotation, the Hall current always has destabilizing effects. These effects have also been shown graphically. The viscoelastic effects disappear for stationary convection. The stable solute parameter, the rotation, the medium permeability, the magnetic field parameter, the Hall current, and the vis- coelasticity introduce oscillatory modes into the system, which are non-existent in their absence. The sufficient conditions for the non-existence of overstability are also obtained.展开更多
文摘Numerical and analytical investigations of the thermosolutal instability in a viscoelastic Rivlin-Ericksen fluid are carried out in the presence of a uniform vertical magnetic field to include the Hall current with a uniform angular velocity in a porous medium. For stationary convection, the stable solute gradient parameter and the rota- tion have stabilizing effects on the system, whereas the magnetic field and the medium permeability have stabilizing or destabilizing effects on the system under certain condi- tions. The Hall current in the presence of rotation has stabilizing effects for sufficiently large Taylor numbers, whereas in the absence of rotation, the Hall current always has destabilizing effects. These effects have also been shown graphically. The viscoelastic effects disappear for stationary convection. The stable solute parameter, the rotation, the medium permeability, the magnetic field parameter, the Hall current, and the vis- coelasticity introduce oscillatory modes into the system, which are non-existent in their absence. The sufficient conditions for the non-existence of overstability are also obtained.