Fuel consumption in the COREX-3000 process run in Baosteel is currently higher than the design index. Therefore, mass and heat balance equations for the COREX process were established using the basic principles in- c... Fuel consumption in the COREX-3000 process run in Baosteel is currently higher than the design index. Therefore, mass and heat balance equations for the COREX process were established using the basic principles in- cluded in the Rist operating diagram for blast furnace (BF) as a reference. Thermodynamic calculations were then used to modify the Rist operating diagram so that it was suitable for the COREX process. The modified Rist operating dia- gram was then applied for the evaluation of metallization rate (MR) and fuel structure to reduce the energy consump- tion in the COREX process. The modified Rist operating diagram for the shaft furnace (SF) provided a nearly ideal value for the restriction point W when the metallization rate was increased, while the point P on the operating line for the melter gasifier (MG) moved upward due to reduction in the heat required in hearth. The feasibility of reduc- ing the energy consumption during the COREX process by changing the fuel structure was also demonstrated.展开更多
基金Item Sponsored by National Natural Science Foundation of China(50934007,50874129)National High-tech Research and Development Program of China(2009AA06Z105)+1 种基金Special Research Foundation of Young Teachers of University of Science and Technology Liaoning of China(2014QN30)Foundation of Liaoning Educational Committee of China(L2015264)
文摘 Fuel consumption in the COREX-3000 process run in Baosteel is currently higher than the design index. Therefore, mass and heat balance equations for the COREX process were established using the basic principles in- cluded in the Rist operating diagram for blast furnace (BF) as a reference. Thermodynamic calculations were then used to modify the Rist operating diagram so that it was suitable for the COREX process. The modified Rist operating dia- gram was then applied for the evaluation of metallization rate (MR) and fuel structure to reduce the energy consump- tion in the COREX process. The modified Rist operating diagram for the shaft furnace (SF) provided a nearly ideal value for the restriction point W when the metallization rate was increased, while the point P on the operating line for the melter gasifier (MG) moved upward due to reduction in the heat required in hearth. The feasibility of reduc- ing the energy consumption during the COREX process by changing the fuel structure was also demonstrated.