At present, gravity field and steady-state ocean circulation explorer(GOCE) gravity data are always used to compute regional gravity anomaly and geoid height. In this study, the latest GOCE gravity field model data...At present, gravity field and steady-state ocean circulation explorer(GOCE) gravity data are always used to compute regional gravity anomaly and geoid height. In this study, the latest GOCE gravity field model data(from Oct. 2009 to Jul. 2010) are used to compute the gravity gradient of China's Mainland according to a rigorous recursion formula(in all the six directions). The results show that the numerical values of the gravity gradients are larger in the T rr direction than those in the other directions. They reflect the terrain characteristics in detail and correlate with the regional tectonics; however, in the T ql and T r l directions,the numerical values are relatively smaller and the gravity gradients in the T r l direction do not reflect the terrain characteristics in detail.展开更多
基金supported by Key Projects of Henan Province Department of Education Science and Technology(14B420001)
文摘At present, gravity field and steady-state ocean circulation explorer(GOCE) gravity data are always used to compute regional gravity anomaly and geoid height. In this study, the latest GOCE gravity field model data(from Oct. 2009 to Jul. 2010) are used to compute the gravity gradient of China's Mainland according to a rigorous recursion formula(in all the six directions). The results show that the numerical values of the gravity gradients are larger in the T rr direction than those in the other directions. They reflect the terrain characteristics in detail and correlate with the regional tectonics; however, in the T ql and T r l directions,the numerical values are relatively smaller and the gravity gradients in the T r l direction do not reflect the terrain characteristics in detail.