Starting from the basic equations of hydrodynamics, the maximum power- type variational principle of the hydrodynamics of viscous fluids was established by Weizang CHIEN in 1984. Through long-term research, it is clar...Starting from the basic equations of hydrodynamics, the maximum power- type variational principle of the hydrodynamics of viscous fluids was established by Weizang CHIEN in 1984. Through long-term research, it is clarified that the maximum power-type variational principle coincides with the Jourdian principle, which is one of the common principles for analytical mechanics. In the paper, the power-type variational principle is extended to rigid-body dynamics, elasto-dynamics, and rigid-elastic:liquid coupling dynamics. The governing equations of the rigid-elastic-liquid coupling dynamics in the liquid-filled system are obtained by deriving the stationary value conditions. The results show that, with the power-type variational principles studied directly in the state space, some transformations in the time domain space may be omitted in the establishing process, and the rigid-elastic-liqUid coupling dynamics can be easily numerically modeled. Moreover, the analysis of the coupling dynamics in the liquid-filled system in this paper agrees well with the numerical analyses of the coupling dynamics in the liquid-filled system offered in the literatures.展开更多
Compliant mechanisms with curved flexure hinges/beams have potential advantages of small spaces,low stress levels,and flexible design parameters,which have attracted considerable attention in precision engineering,met...Compliant mechanisms with curved flexure hinges/beams have potential advantages of small spaces,low stress levels,and flexible design parameters,which have attracted considerable attention in precision engineering,metamaterials,robotics,and so forth.However,serial-parallel configurations with curved flexure hinges/beams often lead to a complicated parametric design.Here,the transfer matrix method is enabled for analysis of both the kinetostatics and dynamics of general serial-parallel compliant mechanisms without deriving laborious formulas or combining other modeling methods.Consequently,serial-parallel compliant mechanisms with curved flexure hinges/beams can be modeled in a straightforward manner based on a single transfer matrix of Timoshenko straight beams using a step-by-step procedure.Theoretical and numerical validations on two customized XY nanopositioners comprised of straight and corrugated flexure units confirm the concise modeling process and high prediction accuracy of the presented approach.In conclusion,the present study provides an enhanced transfer matrix modeling approach to streamline the kinetostatic and dynamic analyses of general serial-parallel compliant mechanisms and beam structures,including curved flexure hinges and irregular-shaped rigid bodies.展开更多
For the dynamics of a rigid body with a fixed point based on the quaternion and the corresponding generalized momenta, a displacement-based symplectic integration scheme for differential-algebraic equations is propose...For the dynamics of a rigid body with a fixed point based on the quaternion and the corresponding generalized momenta, a displacement-based symplectic integration scheme for differential-algebraic equations is proposed and applied to the Lagrange's equations based on dependent generalized momenta. Numerical experiments show that the algorithm possesses such characters as high precision and preserving system invariants. More importantly, the generalized momenta based Lagrange's equations show unique advantages over the traditional Lagrange's equations in symplectic integrations.展开更多
<strong>Background:</strong><span style="font-family:;" "=""><span style="font-family:Verdana;"> Intraoperative surgical planning tools (ISPTs) used in curren...<strong>Background:</strong><span style="font-family:;" "=""><span style="font-family:Verdana;"> Intraoperative surgical planning tools (ISPTs) used in current-generation robotic arm-assisted total knee arthroplasty (RTKA) systems (such as Navio</span><sup><span style="font-size:12px;font-family:Verdana;"><span lang="ZH-CN" style="font-size:12pt;font-family:宋体;">®</span></span></sup><span style="font-family:Verdana;"> and MAKO</span><sup><span style="font-size:12px;font-family:Verdana;"><span lang="ZH-CN" style="font-size:12pt;font-family:宋体;">®</span></span></sup><span style="font-family:Verdana;">) involve employment of postoperative passive joint balancing. This results in improper ligament tension, which may negatively impact joint stability, which, in turn, may adversely affect patient function after TKA. </span><b><span style="font-family:Verdana;">Methods:</span></b><span style="font-family:Verdana;"> A simulation-enhanced ISPT (SEISPT) that provides insights relating to postoperative active joint mechanics was developed. This involved four steps: 1) validation of a multi-body musculoskeletal model;2) optimization of the validated model;3) use of the validated and optimized model to derive knee performance equations (KPEs), which are equations that relate implant component characteristics to implant component biomechanical responses;and 4) optimization of the KPEs with respect to these responses. In a proof-of-concept study, KPEs that involved two</span></span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">com</span><span style="font-family:Verdana;">- </span><span style="font-family:;" "=""><span style="font-family:Verdana;">ponent biomechanical responses that have been shown to strongly correlate with poor proprioception (a common patient complaint post-TKA) were used to calculate optimal positions and orientations of the femoral and tibial components in the TKA design implanted in one subject (as reported in a publicly-available dataset). </span><b><span st展开更多
基金supported by the National Natural Science Foundation of China(No.10272034)the Fundamental Research Funds for the Central Universities of China(No.HEUCF130205)
文摘Starting from the basic equations of hydrodynamics, the maximum power- type variational principle of the hydrodynamics of viscous fluids was established by Weizang CHIEN in 1984. Through long-term research, it is clarified that the maximum power-type variational principle coincides with the Jourdian principle, which is one of the common principles for analytical mechanics. In the paper, the power-type variational principle is extended to rigid-body dynamics, elasto-dynamics, and rigid-elastic:liquid coupling dynamics. The governing equations of the rigid-elastic-liquid coupling dynamics in the liquid-filled system are obtained by deriving the stationary value conditions. The results show that, with the power-type variational principles studied directly in the state space, some transformations in the time domain space may be omitted in the establishing process, and the rigid-elastic-liqUid coupling dynamics can be easily numerically modeled. Moreover, the analysis of the coupling dynamics in the liquid-filled system in this paper agrees well with the numerical analyses of the coupling dynamics in the liquid-filled system offered in the literatures.
基金funded by the National Natural Science Foundation of China(Grant/Award Numbers:52075179 and 52130508)Jiangsu Policy Guidance Program(International Science and Technology Cooperation)the Belt and Road Initiative Innovative Cooperation Projects:BZ2021016.
文摘Compliant mechanisms with curved flexure hinges/beams have potential advantages of small spaces,low stress levels,and flexible design parameters,which have attracted considerable attention in precision engineering,metamaterials,robotics,and so forth.However,serial-parallel configurations with curved flexure hinges/beams often lead to a complicated parametric design.Here,the transfer matrix method is enabled for analysis of both the kinetostatics and dynamics of general serial-parallel compliant mechanisms without deriving laborious formulas or combining other modeling methods.Consequently,serial-parallel compliant mechanisms with curved flexure hinges/beams can be modeled in a straightforward manner based on a single transfer matrix of Timoshenko straight beams using a step-by-step procedure.Theoretical and numerical validations on two customized XY nanopositioners comprised of straight and corrugated flexure units confirm the concise modeling process and high prediction accuracy of the presented approach.In conclusion,the present study provides an enhanced transfer matrix modeling approach to streamline the kinetostatic and dynamic analyses of general serial-parallel compliant mechanisms and beam structures,including curved flexure hinges and irregular-shaped rigid bodies.
文摘For the dynamics of a rigid body with a fixed point based on the quaternion and the corresponding generalized momenta, a displacement-based symplectic integration scheme for differential-algebraic equations is proposed and applied to the Lagrange's equations based on dependent generalized momenta. Numerical experiments show that the algorithm possesses such characters as high precision and preserving system invariants. More importantly, the generalized momenta based Lagrange's equations show unique advantages over the traditional Lagrange's equations in symplectic integrations.
文摘<strong>Background:</strong><span style="font-family:;" "=""><span style="font-family:Verdana;"> Intraoperative surgical planning tools (ISPTs) used in current-generation robotic arm-assisted total knee arthroplasty (RTKA) systems (such as Navio</span><sup><span style="font-size:12px;font-family:Verdana;"><span lang="ZH-CN" style="font-size:12pt;font-family:宋体;">®</span></span></sup><span style="font-family:Verdana;"> and MAKO</span><sup><span style="font-size:12px;font-family:Verdana;"><span lang="ZH-CN" style="font-size:12pt;font-family:宋体;">®</span></span></sup><span style="font-family:Verdana;">) involve employment of postoperative passive joint balancing. This results in improper ligament tension, which may negatively impact joint stability, which, in turn, may adversely affect patient function after TKA. </span><b><span style="font-family:Verdana;">Methods:</span></b><span style="font-family:Verdana;"> A simulation-enhanced ISPT (SEISPT) that provides insights relating to postoperative active joint mechanics was developed. This involved four steps: 1) validation of a multi-body musculoskeletal model;2) optimization of the validated model;3) use of the validated and optimized model to derive knee performance equations (KPEs), which are equations that relate implant component characteristics to implant component biomechanical responses;and 4) optimization of the KPEs with respect to these responses. In a proof-of-concept study, KPEs that involved two</span></span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">com</span><span style="font-family:Verdana;">- </span><span style="font-family:;" "=""><span style="font-family:Verdana;">ponent biomechanical responses that have been shown to strongly correlate with poor proprioception (a common patient complaint post-TKA) were used to calculate optimal positions and orientations of the femoral and tibial components in the TKA design implanted in one subject (as reported in a publicly-available dataset). </span><b><span st