Let Vk=u1u2……uk, ui's be i.i.d - U(0, 1), the p.d.f of 1 - Vk+l be the GF of the unsigned Stirling numbers of the first kind s(n, k). This paper discusses the applications of uniform distribution to combinator...Let Vk=u1u2……uk, ui's be i.i.d - U(0, 1), the p.d.f of 1 - Vk+l be the GF of the unsigned Stirling numbers of the first kind s(n, k). This paper discusses the applications of uniform distribution to combinatorial analysis and Riemann zeta function; several identities of Stifling series are established, and the Euler's result for ∑ Hn/n^k-l, k ≥ 3 is given a new probabilistic proof.展开更多
By the second mean-value theorem of calculus (Gauss-Bonnet theorem) we prove that the class of functionswith an integral representation of the form with a real-valued function which is non-increasing a...By the second mean-value theorem of calculus (Gauss-Bonnet theorem) we prove that the class of functionswith an integral representation of the form with a real-valued function which is non-increasing and decreases in infinity more rapidly than any exponential functions , possesses zeros only on the imaginary axis. The Riemann zeta function as it is known can be related to an entire functionwith the same non-trivial zeros as . Then after a trivial argument displacement we relate it to a function with a representation of the form where is rapidly decreasing in infinity and satisfies all requirements necessary for the given proof of the position of its zeros on the imaginary axis z=iy by the second mean-value theorem. Besides this theorem we apply the Cauchy-Riemann differential equation in an integrated operator form derived in the Appendix B. All this means that we prove a theorem for zeros of on the imaginary axis z=iy for a whole class of function which includes in this way the proof of the Riemann hypothesis. This whole class includes, in particular, also the modified Bessel functions for which it is known that their zeros lie on the imaginary axis and which affirms our conclusions that we intend to publish at another place. In the same way a class of almost-periodic functions to piece-wise constant non-increasing functions belong also to this case. At the end we give shortly an equivalent way of a more formal description of the obtained results using the Mellin transform of functions with its variable substituted by an operator.展开更多
Formulated in 1859 by the mathematician Bernhard Riemann, the Riemann hypothesis is a conjecture. She says that the Riemann’s Zeta function non-trivial zeros of all have real part . This demonstration would impr...Formulated in 1859 by the mathematician Bernhard Riemann, the Riemann hypothesis is a conjecture. She says that the Riemann’s Zeta function non-trivial zeros of all have real part . This demonstration would improve the prime numbers distribution knowledge. This conjecture constitutes one of the most important mathematics unsolved problems of the 21st century: it is one of the famous Hilbert problems proposed in 1900. In this article, a method for solving this conjecture is given. This work has been started by finding an analytical function which gives a best accurate 10<sup>-8</sup> of particular zeros sample that this number has increased gradually and finally prooving that this function is always irrational. This demonstration is important as allows Riemann’s zeta function to be a model function in the Dirichlet series theory and be at the crossroads of many other theories. Also, it is going to serve as a motivation and guideline for new studies.展开更多
基金the Mathematical Tianyuan Foundation (Grant No.A0324645) of China
文摘Let Vk=u1u2……uk, ui's be i.i.d - U(0, 1), the p.d.f of 1 - Vk+l be the GF of the unsigned Stirling numbers of the first kind s(n, k). This paper discusses the applications of uniform distribution to combinatorial analysis and Riemann zeta function; several identities of Stifling series are established, and the Euler's result for ∑ Hn/n^k-l, k ≥ 3 is given a new probabilistic proof.
文摘By the second mean-value theorem of calculus (Gauss-Bonnet theorem) we prove that the class of functionswith an integral representation of the form with a real-valued function which is non-increasing and decreases in infinity more rapidly than any exponential functions , possesses zeros only on the imaginary axis. The Riemann zeta function as it is known can be related to an entire functionwith the same non-trivial zeros as . Then after a trivial argument displacement we relate it to a function with a representation of the form where is rapidly decreasing in infinity and satisfies all requirements necessary for the given proof of the position of its zeros on the imaginary axis z=iy by the second mean-value theorem. Besides this theorem we apply the Cauchy-Riemann differential equation in an integrated operator form derived in the Appendix B. All this means that we prove a theorem for zeros of on the imaginary axis z=iy for a whole class of function which includes in this way the proof of the Riemann hypothesis. This whole class includes, in particular, also the modified Bessel functions for which it is known that their zeros lie on the imaginary axis and which affirms our conclusions that we intend to publish at another place. In the same way a class of almost-periodic functions to piece-wise constant non-increasing functions belong also to this case. At the end we give shortly an equivalent way of a more formal description of the obtained results using the Mellin transform of functions with its variable substituted by an operator.
文摘Formulated in 1859 by the mathematician Bernhard Riemann, the Riemann hypothesis is a conjecture. She says that the Riemann’s Zeta function non-trivial zeros of all have real part . This demonstration would improve the prime numbers distribution knowledge. This conjecture constitutes one of the most important mathematics unsolved problems of the 21st century: it is one of the famous Hilbert problems proposed in 1900. In this article, a method for solving this conjecture is given. This work has been started by finding an analytical function which gives a best accurate 10<sup>-8</sup> of particular zeros sample that this number has increased gradually and finally prooving that this function is always irrational. This demonstration is important as allows Riemann’s zeta function to be a model function in the Dirichlet series theory and be at the crossroads of many other theories. Also, it is going to serve as a motivation and guideline for new studies.