针对高速列车的动力学性能评价标准中所涉及的评价内容、评价方法、评价指标及限值展开综述,围绕蛇行运动稳定性、脱轨安全性和运行平稳性展开标准分析和对比,包括ISO系列、UIC系列、EN系列、TSI系列、FRA系列、APTA系列和中国国标等法...针对高速列车的动力学性能评价标准中所涉及的评价内容、评价方法、评价指标及限值展开综述,围绕蛇行运动稳定性、脱轨安全性和运行平稳性展开标准分析和对比,包括ISO系列、UIC系列、EN系列、TSI系列、FRA系列、APTA系列和中国国标等法律规范、行业标准、技术规范等,指出不足或改进建议;对具有代表性的动力学标准进行详细对比,包括新旧版本国标《机车车辆动力学性能评定及试验鉴定规范》(GB/T 5599)、国际铁路联盟Testing and Approval of RailwayVehicles from the Point of View of Their Dynamic Behaviour—Safety—Track Fatigue—Running Behaviour(UIC 518)、俄罗斯Railway Multiple Units—Durability and Dynamics Requirements(GOST/R 55495)等;对北美FRA和APTA系列标准规定的理想轨道激励下动态响应、准静态性能评价方法等进行应用示范。研究结果表明:蛇行运动稳定性均通过构架横向加速度、构架力或轮轨力进行评判,而数值仿真、台架和线路试验需选择对应适用的方法;结合现阶段中国高速列车的长期服役动力学性能,若列车以400 km·h^(-1)及以上速度运行时,建议加速度滤波带宽仍采用0.5~10.0 Hz,幅值限值建议7 Hz以内为8 m·s^(-2),而7~9 Hz放宽至10 m·s^(-2),并持续10次、2 s或100 m;针对爬轨脱轨安全性评估,现有标准均基于轮轨力和车轮抬升量进行动态和静态评判,但在指标限值、持续作用时间或运行距离上存在差异,建议采用车轮脱轨系数和轮重减载率的联合评判方法;新版GB/T 5599删除了倾覆系数和轮轨横向力指标,放宽了轮重减载率限值,轮轴横向力限值维持不变;GOST/R 55495评价方法不区分车辆类型,采用构架力而非轮轨力对运行安全性进行评价,横垂向平稳性指标计算时采用相同的频域加权,且低频段加权带宽及幅值显著比GB/T 5599大,不对平稳性指标进行分级评价;复兴号CR400BF动车组的运行安全性指标展开更多
Due to the interconnection of various renewable energies and adaptive technologies, voltage quality and frequency stability of modern power systems are becoming erratic. Superconducting magnetic energy storage(SMES),f...Due to the interconnection of various renewable energies and adaptive technologies, voltage quality and frequency stability of modern power systems are becoming erratic. Superconducting magnetic energy storage(SMES),for its dynamic characteristic, is very efficient for rapid exchange of electrical power with grid during small and large disturbances to address those instabilities.In addition,SMES plays an important role in integrating renewable sources such as wind generators to power grid by controlling output power of wind plant and improving the stability of power system.Efficient application of SMES in various power system operations depends on the proper location in the power system, exact energy and power ratings and appropriate controllers. In this paper, an effort is given to explain SMES device and its controllability to mitigate the stability of power grid integrated with wind power generation systems.展开更多
In order to control the low frequency vibration of railway vehicles, a vertical two degrees of freedom(2DOF) low frequency dynamic vibration absorber(DVA) based on acceleration is proposed. Parameters of the dynamic v...In order to control the low frequency vibration of railway vehicles, a vertical two degrees of freedom(2DOF) low frequency dynamic vibration absorber(DVA) based on acceleration is proposed. Parameters of the dynamic vibration absorber are put forth to control the low frequency vibration of car body bouncing and pitching. Next, the acceleration power spectrum density(PSD)and ride quality of the car body are calculated based on the pseudo excitation method(PEM) and covariance algorithm,respectively. According to the requirement of 2DOF low frequency DVA, the isolators with high static low dynamic stiffness(HSLDS) are designed. A high-speed train dynamic model containing HSLDS isolators is established to validate the effects on the car body vibration. The results reveal that the 2D low frequency DVA can significantly reduce the vibration of the car body bouncing and pitching. Thus, the ride quality of the vehicle is increased, and passenger comfort is improved.展开更多
文摘针对高速列车的动力学性能评价标准中所涉及的评价内容、评价方法、评价指标及限值展开综述,围绕蛇行运动稳定性、脱轨安全性和运行平稳性展开标准分析和对比,包括ISO系列、UIC系列、EN系列、TSI系列、FRA系列、APTA系列和中国国标等法律规范、行业标准、技术规范等,指出不足或改进建议;对具有代表性的动力学标准进行详细对比,包括新旧版本国标《机车车辆动力学性能评定及试验鉴定规范》(GB/T 5599)、国际铁路联盟Testing and Approval of RailwayVehicles from the Point of View of Their Dynamic Behaviour—Safety—Track Fatigue—Running Behaviour(UIC 518)、俄罗斯Railway Multiple Units—Durability and Dynamics Requirements(GOST/R 55495)等;对北美FRA和APTA系列标准规定的理想轨道激励下动态响应、准静态性能评价方法等进行应用示范。研究结果表明:蛇行运动稳定性均通过构架横向加速度、构架力或轮轨力进行评判,而数值仿真、台架和线路试验需选择对应适用的方法;结合现阶段中国高速列车的长期服役动力学性能,若列车以400 km·h^(-1)及以上速度运行时,建议加速度滤波带宽仍采用0.5~10.0 Hz,幅值限值建议7 Hz以内为8 m·s^(-2),而7~9 Hz放宽至10 m·s^(-2),并持续10次、2 s或100 m;针对爬轨脱轨安全性评估,现有标准均基于轮轨力和车轮抬升量进行动态和静态评判,但在指标限值、持续作用时间或运行距离上存在差异,建议采用车轮脱轨系数和轮重减载率的联合评判方法;新版GB/T 5599删除了倾覆系数和轮轨横向力指标,放宽了轮重减载率限值,轮轴横向力限值维持不变;GOST/R 55495评价方法不区分车辆类型,采用构架力而非轮轨力对运行安全性进行评价,横垂向平稳性指标计算时采用相同的频域加权,且低频段加权带宽及幅值显著比GB/T 5599大,不对平稳性指标进行分级评价;复兴号CR400BF动车组的运行安全性指标
文摘Due to the interconnection of various renewable energies and adaptive technologies, voltage quality and frequency stability of modern power systems are becoming erratic. Superconducting magnetic energy storage(SMES),for its dynamic characteristic, is very efficient for rapid exchange of electrical power with grid during small and large disturbances to address those instabilities.In addition,SMES plays an important role in integrating renewable sources such as wind generators to power grid by controlling output power of wind plant and improving the stability of power system.Efficient application of SMES in various power system operations depends on the proper location in the power system, exact energy and power ratings and appropriate controllers. In this paper, an effort is given to explain SMES device and its controllability to mitigate the stability of power grid integrated with wind power generation systems.
文摘考虑走行轮胎的侧偏效应和滤波效应,使用线性轮胎模型建立了中央导向的单轴轮胎走行部自动导向捷运系统(APM)车辆的动力学方程和Simulink仿真模型,并仿真分析了导向轮与导向轨不同接触状态对APM车辆的曲线通过性能和运行平稳性的影响.仿真结果表明:导向轮设置初始预压力不会明显改善曲线通过性能,但会显著恶化APM车辆的横向平稳性;导向轮与导向轨的间隙增加了通过曲线时走行轮的侧偏力和导向轮的导向力.综合考虑曲线通过性能和横向平稳性,导向轮与导向轨之间应留间隙,但需要控制在0~5 mm.
基金supported by the National Natural Science Foundation of China(Grant No.51805373)
文摘In order to control the low frequency vibration of railway vehicles, a vertical two degrees of freedom(2DOF) low frequency dynamic vibration absorber(DVA) based on acceleration is proposed. Parameters of the dynamic vibration absorber are put forth to control the low frequency vibration of car body bouncing and pitching. Next, the acceleration power spectrum density(PSD)and ride quality of the car body are calculated based on the pseudo excitation method(PEM) and covariance algorithm,respectively. According to the requirement of 2DOF low frequency DVA, the isolators with high static low dynamic stiffness(HSLDS) are designed. A high-speed train dynamic model containing HSLDS isolators is established to validate the effects on the car body vibration. The results reveal that the 2D low frequency DVA can significantly reduce the vibration of the car body bouncing and pitching. Thus, the ride quality of the vehicle is increased, and passenger comfort is improved.