Controlled synthesis of structurally anisotropic rhenium diselenide (ReSe2) with macroscopically uniform and strictly monolayer thickness as well as tunable domain shape/size is of great interest for electronics-, o...Controlled synthesis of structurally anisotropic rhenium diselenide (ReSe2) with macroscopically uniform and strictly monolayer thickness as well as tunable domain shape/size is of great interest for electronics-, optoelectronics-, and electrocatalysis-related applications. Herein, we describe the controlled synthesis of uniform monolayer ReSe2 flakes with variable morphology (sunflower- or truncated-triangle-shaped) on SiO2/Si substrates using different ambient-pressure chemical vapor deposition (CVD) setups. The prepared polycrystalline ReSe2 flakes were transferred intact onto Au foil electrodes and tested for activity in the hydrogen evolution reaction (HER). Interestingly, compared to the compact truncated-triangle-shaped ReSe2 flakes, their edge-abundant sunflower-shaped counterparts exhibited superior electrocatalytic HER activity, featuring a relatively low Tafel slope of - 76 mV/dec and an exchange current density of 10.5 μA/cm2. Thus, our work demonstrates that CVD-grown ReSe2 is a promising two- dimensional anisotropic material for applications in the electrocatalytic HER.展开更多
Rhenium diselenide(ReSe2) has caused considerable concerns in the field of energy storage because the compound and its composites still suffer from low specific capacity and inferior cyclic stability.In this study,ReS...Rhenium diselenide(ReSe2) has caused considerable concerns in the field of energy storage because the compound and its composites still suffer from low specific capacity and inferior cyclic stability.In this study,ReSe2 nanoparticles encapsulated in carbon nanofibers were synthesized successfully with simple electrospinning and heat treatment.It was found that graphene modifications could affect considerably the microstructure and electrochemical properties of ReSe2–carbon nanofibers.Accordingly,the modified compound maintained a capacity of 227 mAhg-1 after 500cycles at 200 mAg-1 for Na+storage,230 mAh g-1 after 200 cycles at 200 mAg-1,212 mAh g-1 after 150 cycles at 500 mAg-1 for K+ storage,which corresponded to the capacity retention ratios of 89%,97%,and 86%,respectively.Even in Na+full cells,its capacity was maintained to 82% after 200 cycles at 1 C(117 mAg-1).The superior stability of ReSe2–carbon nanofibers benefitted from the extremely weak van der Waals interactions and large interlayer spacing of ReSe2,in association with the role of graphene-modified carbon nanofibers,in terms of the shortening of electron/ion transport paths and the improvement of structural support.This study may provide a new route for a broadened range of applications of other rhenium-based compounds.展开更多
In the current extensive studies of layered two-dimensional (2D) materials, compared to hexagonal structures such as graphene, hBN, and MoS2, low- symmetry 2D materials have shown great potential for applications in...In the current extensive studies of layered two-dimensional (2D) materials, compared to hexagonal structures such as graphene, hBN, and MoS2, low- symmetry 2D materials have shown great potential for applications in anisotropic devices. Rhenium diselenide (ReSe2) possesses the bulk space group P1 and belongs to the triclinic crystal system with a deformed cadmium-iodide-type structure. Here, we propose an electron diffraction-based method to distinguish the monolayer ReSe2 membrane from multilayer ReSe2 and its two different vertical orientations. Our method is also applicable to other low-symmetry crystal systems, including both triclinic and monoclinic lattices, as long as their third unit-cell basis vectors are not perpendicular to the basal plane. Our experimental results are well explained by kinematical electron diffraction theory and the corresponding simulations. Generalization of our method to other 2D materials, such as ~:raphene, is also discussed.展开更多
The anisotropic two-dimensional (2D) layered material rhenium disulfide (ReSe2) has attracted considerable attention because of its unusual properties and promising applications in electronic and optoelectronic de...The anisotropic two-dimensional (2D) layered material rhenium disulfide (ReSe2) has attracted considerable attention because of its unusual properties and promising applications in electronic and optoelectronic devices. However, because of its low lattice symmetry and interlayer decoupling, anisotropic growth and out-of-plane growth occur easily, yielding thick flakes, dendritic structure, or flower-like structure. In this stud34 we demonstrated a bottom-up method for the controlled and scalable synthesis of ReSe2 by van der Waals epitaxy. To achieve controllable growth, a micro-reactor with a confined reaction space was constructed by stacking two mica substrates in the chemical vapor deposition system. Within the confined reaction space, the nucleation density and growth rate of ReSe2 were significantly reduced, favoring the large-area synthesis of ReSe2 with a uniform monolayer thickness. The morphological evolution of ReSe2 with growth temperature indicated that the anisotropic growth was suppressed at a low growth temperature (〈600 ℃). Field-effect transistors employing the grown ReSe2 exhibited p-type conduction with a current ON/OFF ratio up to 10s and a hole carrier mobility of 0.98 cm^2/(V·s). Furthermore, the ReSe2 device exhibited an outstanding photoresponse to near-infrared light, with responsivity up to 8.4 and 5.1 A/W for 850- and 940-nm light, respectively. This work not only promotes the large-scale application of ReSe2 in high-performance electronic devices but also clarifies the growth mechanism of low-lattice symmetry 2D materials.展开更多
基金The work was supported by the National Natural Science Foundation of China (Nos. 51290272, 51472008, 21573004, 51522212, 51421002, 51672154, 51372130, and 51672307), the National Key Technologies Research and Development Program of China (No. 2016YFA0200103), the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (No. KF201601), the National Program on Key Basic Research Project (No. 2014CB921002), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB07030200), the Key Research Program of Frontier Sciences, CAS (No. QYZDB-SSW-JSC035), and the MoST (2016YFA0200200).
文摘Controlled synthesis of structurally anisotropic rhenium diselenide (ReSe2) with macroscopically uniform and strictly monolayer thickness as well as tunable domain shape/size is of great interest for electronics-, optoelectronics-, and electrocatalysis-related applications. Herein, we describe the controlled synthesis of uniform monolayer ReSe2 flakes with variable morphology (sunflower- or truncated-triangle-shaped) on SiO2/Si substrates using different ambient-pressure chemical vapor deposition (CVD) setups. The prepared polycrystalline ReSe2 flakes were transferred intact onto Au foil electrodes and tested for activity in the hydrogen evolution reaction (HER). Interestingly, compared to the compact truncated-triangle-shaped ReSe2 flakes, their edge-abundant sunflower-shaped counterparts exhibited superior electrocatalytic HER activity, featuring a relatively low Tafel slope of - 76 mV/dec and an exchange current density of 10.5 μA/cm2. Thus, our work demonstrates that CVD-grown ReSe2 is a promising two- dimensional anisotropic material for applications in the electrocatalytic HER.
基金supported by the National Natural Science Foundation of China(Grants51772082,51574117,and 51804106)the Research Projects of Degree and Graduate Education Teaching Reformation in Hunan Province(JG2018B031,JG2018A007)+1 种基金the Natural Science Foundation of Hunan Province(2019JJ30002,2019JJ50061)project funded by the China Postdoctoral Science Foundation(2017M610495,2018T110822)
文摘Rhenium diselenide(ReSe2) has caused considerable concerns in the field of energy storage because the compound and its composites still suffer from low specific capacity and inferior cyclic stability.In this study,ReSe2 nanoparticles encapsulated in carbon nanofibers were synthesized successfully with simple electrospinning and heat treatment.It was found that graphene modifications could affect considerably the microstructure and electrochemical properties of ReSe2–carbon nanofibers.Accordingly,the modified compound maintained a capacity of 227 mAhg-1 after 500cycles at 200 mAg-1 for Na+storage,230 mAh g-1 after 200 cycles at 200 mAg-1,212 mAh g-1 after 150 cycles at 500 mAg-1 for K+ storage,which corresponded to the capacity retention ratios of 89%,97%,and 86%,respectively.Even in Na+full cells,its capacity was maintained to 82% after 200 cycles at 1 C(117 mAg-1).The superior stability of ReSe2–carbon nanofibers benefitted from the extremely weak van der Waals interactions and large interlayer spacing of ReSe2,in association with the role of graphene-modified carbon nanofibers,in terms of the shortening of electron/ion transport paths and the improvement of structural support.This study may provide a new route for a broadened range of applications of other rhenium-based compounds.
基金This work is financially supported by the National Basic Research Program of China (Nos. 2014CB932500 and 2015CB921004), the National Natural Science Foundation of China (Nos. 51472215, 51222202, 61571197 and 61172011), the 111 project (No. B16042) and MOST 104-2112-M-011-002-MY3. The authors would like to thank Prof. Christoph Koch fromHumbold University of Berlin for the fruitful dis- cussions on multislice simulations. J. Y. acknowledges the EPSRC (UK) funding (Nos. EP/G070326 and EP/ J022098) and supports from Pao Yu-Kong International Foundation for a Chair Professorship in ZJU. This work made use of the resources of the Center of Electron Microscopy of Zhejiang University
文摘In the current extensive studies of layered two-dimensional (2D) materials, compared to hexagonal structures such as graphene, hBN, and MoS2, low- symmetry 2D materials have shown great potential for applications in anisotropic devices. Rhenium diselenide (ReSe2) possesses the bulk space group P1 and belongs to the triclinic crystal system with a deformed cadmium-iodide-type structure. Here, we propose an electron diffraction-based method to distinguish the monolayer ReSe2 membrane from multilayer ReSe2 and its two different vertical orientations. Our method is also applicable to other low-symmetry crystal systems, including both triclinic and monoclinic lattices, as long as their third unit-cell basis vectors are not perpendicular to the basal plane. Our experimental results are well explained by kinematical electron diffraction theory and the corresponding simulations. Generalization of our method to other 2D materials, such as ~:raphene, is also discussed.
基金The authors acknowledge the insightful suggestions and comments from Dr. S. C. Zhang and N. N. Mao at Peking University. This work was supported by the National Natural Science Foundation of China (Nos. 51502167 and 21473110), and the fundamental Research Funds for the Central Universities (No. GK201502003), L. Z. and J. K. acknowledge the funding by the Center for Integrated Quantum Materials under NSF (No. DMR-1231319).
文摘The anisotropic two-dimensional (2D) layered material rhenium disulfide (ReSe2) has attracted considerable attention because of its unusual properties and promising applications in electronic and optoelectronic devices. However, because of its low lattice symmetry and interlayer decoupling, anisotropic growth and out-of-plane growth occur easily, yielding thick flakes, dendritic structure, or flower-like structure. In this stud34 we demonstrated a bottom-up method for the controlled and scalable synthesis of ReSe2 by van der Waals epitaxy. To achieve controllable growth, a micro-reactor with a confined reaction space was constructed by stacking two mica substrates in the chemical vapor deposition system. Within the confined reaction space, the nucleation density and growth rate of ReSe2 were significantly reduced, favoring the large-area synthesis of ReSe2 with a uniform monolayer thickness. The morphological evolution of ReSe2 with growth temperature indicated that the anisotropic growth was suppressed at a low growth temperature (〈600 ℃). Field-effect transistors employing the grown ReSe2 exhibited p-type conduction with a current ON/OFF ratio up to 10s and a hole carrier mobility of 0.98 cm^2/(V·s). Furthermore, the ReSe2 device exhibited an outstanding photoresponse to near-infrared light, with responsivity up to 8.4 and 5.1 A/W for 850- and 940-nm light, respectively. This work not only promotes the large-scale application of ReSe2 in high-performance electronic devices but also clarifies the growth mechanism of low-lattice symmetry 2D materials.