针对数据中心网络在“多对一”并发流量模式下,TCP(Transmission Control Protocol)及其现有改进方案在单轮数据传输和多轮数据传输下吞吐率低下问题,提出了一种通过数据包标记实现丢包快速发现和快速重传并动态调整拥塞窗口初始值的策...针对数据中心网络在“多对一”并发流量模式下,TCP(Transmission Control Protocol)及其现有改进方案在单轮数据传输和多轮数据传输下吞吐率低下问题,提出了一种通过数据包标记实现丢包快速发现和快速重传并动态调整拥塞窗口初始值的策略,称为TSL(TCP SkyLine).TSL同时解决了传统TCP Incast问题和多轮数据传输下由遗留窗口引发的TCP Incast问题.实验表明,TSL在单轮数据传输和多轮数据传输下均能获得90%以上的带宽利用率.在10Gbps网络中,其支持的并发连接数与传统TCP和DCTCP相比分别提升了5倍和1倍,有效吞吐率分别提升了18倍和8.6倍;在1Gbps网路中,支持的并发连接数较传统TCP和DCTCP分别提升了5.8倍和1倍.展开更多
The aim of this paper is to present DCM+, a new congestion control protocol for data networks. It stands for Dynamic Congestion control for Mobile networks. New metrics have been newly invented and introduced like nor...The aim of this paper is to present DCM+, a new congestion control protocol for data networks. It stands for Dynamic Congestion control for Mobile networks. New metrics have been newly invented and introduced like normalized advancing index (NAI) and complete transmission time (CTT). The simulations are done for a simple single-hop-topology (sender-router-receiver). The outcomes of this protocol are excellent and, in most cases, better than other approaches. The excellent properties of our proposed protocol were possible through tracking the available slow-start threshold. We achieved performance improvement, minimized end-to-end delay and large reduction in transmission time. DCM+ was able to combine many advantages at same time of the protocols NewReno and Westwood+. The results show, that DCM+ is extremely adequate for different types of networks. Feedback as main principle of control theory was used to control the congestion in the network. The parameters Round-Trip-Time (RTT) and Retransmission Timeout (RTO) are used as feedback signals to adjust the next congestion window (cwnd).展开更多
作为广泛使用的网络传输控制协议,TCP(Transmission Control Protocol)在高速移动网络中遇到了新的性能瓶颈。首先由于移动网络中存在随机位错误导致的丢包,而TCP协议不能有效区分这类丢包与拥塞丢包,导致TCP频繁的降低拥塞窗口无法有...作为广泛使用的网络传输控制协议,TCP(Transmission Control Protocol)在高速移动网络中遇到了新的性能瓶颈。首先由于移动网络中存在随机位错误导致的丢包,而TCP协议不能有效区分这类丢包与拥塞丢包,导致TCP频繁的降低拥塞窗口无法有效利用移动网络的带宽资源。其次,高速移动网络的发展使得带宽时延积BDP(Bandwidth-Delay Product)进一步增大,在发生丢包时TCP协议中的流量控制将导致性能瓶颈和易引起重传超时。通过Wireshark工具抓取大量的tracing进行分析,发现重传超时的主要原因是重传数据包再次被丢,而TCP又不能发现丢失原因,因此无法进行再次重传最终导致重传超时。针对这一问题,本文提出的方法 DTOR(Detect Timeout and Retransmission)可以帮助TCP检测到重传数据包再次丢失并触发再次重传,DTOR使网络带宽利用率提升了20%左右。展开更多
To achieve the mobility of computers during communication, the TCP connections between fixed host and mobile host may often traverse wired and wireless networks, and the recovery of losses due to wireless transmission...To achieve the mobility of computers during communication, the TCP connections between fixed host and mobile host may often traverse wired and wireless networks, and the recovery of losses due to wireless transmission error is much different from congestion control. The paper analyzes the side effect of RTT estimation while making the TCP source to handle congestion and wireless error losses properly. Then present a strategy using information feedback by the last hop acknowledgement and monitoring the queuing level of the wired bottleneck link by calculating the changes in transmission delay along the path. With the identification of the early stage of congestion, it can respond to wired congestion quickly while keeping wireless link more reliable, and make TCP react to the different packets losses more appropriately.展开更多
文摘The aim of this paper is to present DCM+, a new congestion control protocol for data networks. It stands for Dynamic Congestion control for Mobile networks. New metrics have been newly invented and introduced like normalized advancing index (NAI) and complete transmission time (CTT). The simulations are done for a simple single-hop-topology (sender-router-receiver). The outcomes of this protocol are excellent and, in most cases, better than other approaches. The excellent properties of our proposed protocol were possible through tracking the available slow-start threshold. We achieved performance improvement, minimized end-to-end delay and large reduction in transmission time. DCM+ was able to combine many advantages at same time of the protocols NewReno and Westwood+. The results show, that DCM+ is extremely adequate for different types of networks. Feedback as main principle of control theory was used to control the congestion in the network. The parameters Round-Trip-Time (RTT) and Retransmission Timeout (RTO) are used as feedback signals to adjust the next congestion window (cwnd).
文摘作为广泛使用的网络传输控制协议,TCP(Transmission Control Protocol)在高速移动网络中遇到了新的性能瓶颈。首先由于移动网络中存在随机位错误导致的丢包,而TCP协议不能有效区分这类丢包与拥塞丢包,导致TCP频繁的降低拥塞窗口无法有效利用移动网络的带宽资源。其次,高速移动网络的发展使得带宽时延积BDP(Bandwidth-Delay Product)进一步增大,在发生丢包时TCP协议中的流量控制将导致性能瓶颈和易引起重传超时。通过Wireshark工具抓取大量的tracing进行分析,发现重传超时的主要原因是重传数据包再次被丢,而TCP又不能发现丢失原因,因此无法进行再次重传最终导致重传超时。针对这一问题,本文提出的方法 DTOR(Detect Timeout and Retransmission)可以帮助TCP检测到重传数据包再次丢失并触发再次重传,DTOR使网络带宽利用率提升了20%左右。
文摘To achieve the mobility of computers during communication, the TCP connections between fixed host and mobile host may often traverse wired and wireless networks, and the recovery of losses due to wireless transmission error is much different from congestion control. The paper analyzes the side effect of RTT estimation while making the TCP source to handle congestion and wireless error losses properly. Then present a strategy using information feedback by the last hop acknowledgement and monitoring the queuing level of the wired bottleneck link by calculating the changes in transmission delay along the path. With the identification of the early stage of congestion, it can respond to wired congestion quickly while keeping wireless link more reliable, and make TCP react to the different packets losses more appropriately.