This paper briefly introduces the maneuverable feature of the slightly inclined geosynchronous orbit (SIGSO) satellites under a new control model degraded from the geosynchronous orbit (GEO) communication satellites w...This paper briefly introduces the maneuverable feature of the slightly inclined geosynchronous orbit (SIGSO) satellites under a new control model degraded from the geosynchronous orbit (GEO) communication satellites which will retire as most of the fuel in these satellites has been consumed. Basing on the transmitting Chinese Area Positioning System (CAPS), the authors, by analyses, indicate that such satellites can make an improvement to CAPS constellation configuration, especially to the PDOP value from simulation. The results show that the use of SIGSO satellites can (1) actualize three-dimensional (3D) navigation and positioning compared with the situation, which, only using GEO satellites, cannot be carried out, and improve navigation and positioning accuracy to some extent; (2) reuse the communication services of these satellites for more years, and GEO communication satellites will be retired at a later time and delay their time to become space debris and reduce their pollution of the space environment, so that valuable space resources are maximally used. As for the use of these satellites in the transmitting positioning system, the authors present some views and suggestions in this work.展开更多
Retired geosynchronous (GEO) communication satellites affect the GEO orbit environment in outer space. According to the new concept of modern design, the authors propose creatively a method of reusing retired GEO comm...Retired geosynchronous (GEO) communication satellites affect the GEO orbit environment in outer space. According to the new concept of modern design, the authors propose creatively a method of reusing retired GEO communication satellites, through adjusting retired GEO satellites to slightly inclined orbit geosynchronous (SIGSO) satellites. After these retired satellites are applied to the navigation and communication system, integrity of navigation system and positioning accuracy of the system is improved. Meanwhile, some transponders on these retired satellites can be used to establish a new satellite communication service, and initiate the study and utilization of the multi-life cycle for retired satellites. Experimental results show that this project has significant social value and can make remarkable economic benefit.展开更多
The lifespan models of commercial 18650-type lithium ion batteries (nominal capacity of 1150 mA-h) were presented. The lifespan was extrapolated based on this model. The results indicate that the relationship of cap...The lifespan models of commercial 18650-type lithium ion batteries (nominal capacity of 1150 mA-h) were presented. The lifespan was extrapolated based on this model. The results indicate that the relationship of capacity retention and cycle number can be expressed by Gaussian function. The selecting function and optimal precision were verified through actual match detection and a range of alternating current impedance testing. The cycle life model with high precision (〉99%) is beneficial to shortening the orediction time and cutting the prediction cost.展开更多
The flourishing expansion of the lithium-ion batteries(LIBs) market has led to a surge in the demand for lithium resources. Developing efficient recycling technologies for imminent large-scale retired LIBs can signifi...The flourishing expansion of the lithium-ion batteries(LIBs) market has led to a surge in the demand for lithium resources. Developing efficient recycling technologies for imminent large-scale retired LIBs can significantly facilitate the sustainable utilization of lithium resources. Here, we successfully extract active lithium from spent LIBs through a simple, efficient, and low-energy-consumption chemical leaching process at room temperature, using a solution comprised of polycyclic aromatic hydrocarbons and ether solvents. The mechanism of lithium extraction is elucidated by clarifying the relationship between the redox potential and extraction efficiency. More importantly, the reclaimed active lithium is directly employed to fabricate LiFePO_(4) cathode with performance comparable to commercial materials. When implemented in 56 Ah prismatic cells, the cells deliver stable cycling properties with a capacity retention of ~90% after 1200 cycles. Compared with the other strategies, this technical approach shows superior economic benefits and practical promise. It is anticipated that this method may redefine the recycling paradigm for retired LIBs and drive the sustainable development of industries.展开更多
Electric Vehicles(EVs),as a low-carbon means of transportation,have promptly become popular worldwide in the past decade.Since the lifespan of batteries is limited,massive of Electric Vehicle Batteries(EVBs)are being ...Electric Vehicles(EVs),as a low-carbon means of transportation,have promptly become popular worldwide in the past decade.Since the lifespan of batteries is limited,massive of Electric Vehicle Batteries(EVBs)are being retired,resulting in a rapid increase in the demand for the recycling of retired EVBs in recent years.However,due to high recycling costs and immature recycling technologies,EV manufacturers are facing significant challenges in recycling retired EVBs.China,as the country with the largest number of EV users in the world,is exploring effective incentive policies for the recycling of retired EVBs.In this context,we developed a system dynamics model to analyze the impact of incentive polices such as,recycling subsidies,technological progress,and carbon trading on the retired EVBs recycling.Results show that:1)recycling subsidies can improve the recycling ratios quickly in the short term,and dynamic subsidies are more efficient than static subsidies;2)the policy of technological advancement can reduce the recovery and cascade utilization cost,thus having a positive impact on battery recycling,but the policy effect has a time-delay;3)the carbon trading policy is unable to promote efficient recycling due to the current low carbon prices;4)dynamic subsidy and technological advancement policies complement each other,therefore,the combination of these two policies is the best way to promote the recycling of retired EVBs and reduce carbon emissions.It is hoped that this study will contribute to the ongoing debate on policies for the industrialization of retired EVBs recycling.展开更多
基金Supported by the National Basic Research and Development Program of China (Grant No. 2007CB815501)the Chinese National Programs for High Technology Research and Development (Grant No. 2007AA12z343)
文摘This paper briefly introduces the maneuverable feature of the slightly inclined geosynchronous orbit (SIGSO) satellites under a new control model degraded from the geosynchronous orbit (GEO) communication satellites which will retire as most of the fuel in these satellites has been consumed. Basing on the transmitting Chinese Area Positioning System (CAPS), the authors, by analyses, indicate that such satellites can make an improvement to CAPS constellation configuration, especially to the PDOP value from simulation. The results show that the use of SIGSO satellites can (1) actualize three-dimensional (3D) navigation and positioning compared with the situation, which, only using GEO satellites, cannot be carried out, and improve navigation and positioning accuracy to some extent; (2) reuse the communication services of these satellites for more years, and GEO communication satellites will be retired at a later time and delay their time to become space debris and reduce their pollution of the space environment, so that valuable space resources are maximally used. As for the use of these satellites in the transmitting positioning system, the authors present some views and suggestions in this work.
基金Supported by the National Basic Research and Development Program of China (Grant No. 2007CB815501)the National High Technology Research and Development Program of China (Grant No. 2007AA12z343)
文摘Retired geosynchronous (GEO) communication satellites affect the GEO orbit environment in outer space. According to the new concept of modern design, the authors propose creatively a method of reusing retired GEO communication satellites, through adjusting retired GEO satellites to slightly inclined orbit geosynchronous (SIGSO) satellites. After these retired satellites are applied to the navigation and communication system, integrity of navigation system and positioning accuracy of the system is improved. Meanwhile, some transponders on these retired satellites can be used to establish a new satellite communication service, and initiate the study and utilization of the multi-life cycle for retired satellites. Experimental results show that this project has significant social value and can make remarkable economic benefit.
基金Projects(51204209,51274240)supported by the National Natural Science Foundation of ChinaProject(HNDLKJ[2012]001-1)supported by Henan Electric Power Science&Technology Supporting Program,China
文摘The lifespan models of commercial 18650-type lithium ion batteries (nominal capacity of 1150 mA-h) were presented. The lifespan was extrapolated based on this model. The results indicate that the relationship of capacity retention and cycle number can be expressed by Gaussian function. The selecting function and optimal precision were verified through actual match detection and a range of alternating current impedance testing. The cycle life model with high precision (〉99%) is beneficial to shortening the orediction time and cutting the prediction cost.
基金supported by the National Key Research and Development Program of China (2022YFB2404800)the National Natural Science Foundation of China (U1966214 and 22008082)。
文摘The flourishing expansion of the lithium-ion batteries(LIBs) market has led to a surge in the demand for lithium resources. Developing efficient recycling technologies for imminent large-scale retired LIBs can significantly facilitate the sustainable utilization of lithium resources. Here, we successfully extract active lithium from spent LIBs through a simple, efficient, and low-energy-consumption chemical leaching process at room temperature, using a solution comprised of polycyclic aromatic hydrocarbons and ether solvents. The mechanism of lithium extraction is elucidated by clarifying the relationship between the redox potential and extraction efficiency. More importantly, the reclaimed active lithium is directly employed to fabricate LiFePO_(4) cathode with performance comparable to commercial materials. When implemented in 56 Ah prismatic cells, the cells deliver stable cycling properties with a capacity retention of ~90% after 1200 cycles. Compared with the other strategies, this technical approach shows superior economic benefits and practical promise. It is anticipated that this method may redefine the recycling paradigm for retired LIBs and drive the sustainable development of industries.
基金Supported by the National Natural Science Foundation of China(71961009)the Jiangxi Province Graduate Innovation Funding Project(YC2022-B156)the Hunan Province Social Science Achievements Evaluation Committee Project(XSP24YBC105)。
文摘Electric Vehicles(EVs),as a low-carbon means of transportation,have promptly become popular worldwide in the past decade.Since the lifespan of batteries is limited,massive of Electric Vehicle Batteries(EVBs)are being retired,resulting in a rapid increase in the demand for the recycling of retired EVBs in recent years.However,due to high recycling costs and immature recycling technologies,EV manufacturers are facing significant challenges in recycling retired EVBs.China,as the country with the largest number of EV users in the world,is exploring effective incentive policies for the recycling of retired EVBs.In this context,we developed a system dynamics model to analyze the impact of incentive polices such as,recycling subsidies,technological progress,and carbon trading on the retired EVBs recycling.Results show that:1)recycling subsidies can improve the recycling ratios quickly in the short term,and dynamic subsidies are more efficient than static subsidies;2)the policy of technological advancement can reduce the recovery and cascade utilization cost,thus having a positive impact on battery recycling,but the policy effect has a time-delay;3)the carbon trading policy is unable to promote efficient recycling due to the current low carbon prices;4)dynamic subsidy and technological advancement policies complement each other,therefore,the combination of these two policies is the best way to promote the recycling of retired EVBs and reduce carbon emissions.It is hoped that this study will contribute to the ongoing debate on policies for the industrialization of retired EVBs recycling.