The GABAergic neurons in the parafacial zone(PZ) play an important role in sleep-wake regulation and have been identified as part of a sleep-promoting center in the brainstem, but the long-range connections mediatin...The GABAergic neurons in the parafacial zone(PZ) play an important role in sleep-wake regulation and have been identified as part of a sleep-promoting center in the brainstem, but the long-range connections mediating this function remain poorly characterized. Here, we performed whole-brain mapping of both the inputs and outputs of the GABAergic neurons in the PZ of the mouse brain. We used the modified rabies virus Env A-DG-Ds Red combined with a Cre/lox P gene-expression strategy to map the direct monosynaptic inputs to the GABAergic neurons in the PZ, and found that they receive inputs mainly from the hypothalamic area, zona incerta, and parasubthalamic nucleus in the hypothalamus; the substantia nigra, pars reticulata and deep mesencephalic nucleus in the midbrain;and the intermediate reticular nucleus and medial vestibular nucleus(parvocellular part) in the pons and medulla.We also mapped the axonal projections of the PZ GABAergic neurons with adeno-associated virus, and defined the reciprocal connections of the PZ GABAergic neurons with their input and output nuclei. The newlyfound inputs and outputs of the PZ were also listed compared with the literature. This cell-type-specific neuronal whole-brain mapping of the PZ GABAergic neurons may reveal the circuits underlying various functions such as sleep-wake regulation.展开更多
Elucidation of critical brain areas or structures that are responsible for recovery of impaired consciousness in patients with disorders of consciousness is important because it can provide information that is useful ...Elucidation of critical brain areas or structures that are responsible for recovery of impaired consciousness in patients with disorders of consciousness is important because it can provide information that is useful when developing therapeutic strategies for neurorehabilitation or neurointervention in patients with disorders of consciousness.In this review,studies that have demonstrated brain changes during recovery of impaired consciousness were reviewed.These studies used positron emission tomography,electroencephalography/transcranial magnetic stimulation,diffusion tensor tractography,and diffusion tensor tractography/electroencephalography.The majority of these studies reported on the importance of supratentorial areas or structures in the recovery of impaired consciousness.The important brain areas or structures that were identified were the prefrontal cortex,basal forebrain,anterior cingulate cortex,and parietal cortex.These results have a clinically important implication that these brain areas or structures can be target areas for neurorehabilitation or neurointervention in patients with disorders of consciousness.However,most of studies were case reports;therefore,further original studies involving larger numbers of patients with disorders of consciousness are warranted.In addition,more detailed information on the brain areas or structures that are relevant to the recovery of impaired consciousness is needed.展开更多
Porous organic frameworks(POFs)have become a highly sought-after research domain that offers a promising avenue for developing cutting-edge nanostructured materials,both in their pristine state and when subjected to v...Porous organic frameworks(POFs)have become a highly sought-after research domain that offers a promising avenue for developing cutting-edge nanostructured materials,both in their pristine state and when subjected to various chemical and structural modifications.Metal–organic frameworks,covalent organic frameworks,and hydrogen-bonded organic frameworks are examples of these emerging materials that have gained significant attention due to their unique properties,such as high crystallinity,intrinsic porosity,unique structural regularity,diverse functionality,design flexibility,and outstanding stability.This review provides an overview of the state-of-the-art research on base-stable POFs,emphasizing the distinct pros and cons of reticular framework nanoparticles compared to other types of nanocluster materials.Thereafter,the review highlights the unique opportunity to produce multifunctional tailoring nanoparticles to meet specific application requirements.It is recommended that this potential for creating customized nanoparticles should be the driving force behind future synthesis efforts to tap the full potential of this multifaceted material category.展开更多
Metal-organic frameworks(MOFs)with HKUST-like tbo structures have been paid specific attention for gas sorption and separation because of their specific pore features.According to the geometric similarity of spirobifl...Metal-organic frameworks(MOFs)with HKUST-like tbo structures have been paid specific attention for gas sorption and separation because of their specific pore features.According to the geometric similarity of spirobifluorene and[Cu_(2)(O_(2)CR)_(4)]paddlewheel secondary building units(Cu_(2)SBUs)in HKUST-1,we attempted to rationally construct a HKUST-like MOF by a substitution strategy.Using a judiciously designed octatopic carboxylate ligand,a copper-organic framework,JUC-220,was synthesized.The crystals of JUC-220 exhibited characteristic features in cubic with disorder,possibly due to the disorder substitution and high symmetry of tbo topology.Two related HKUST-like structure models were considered.Thanks to the suitable pore size and specific pore shapes,the adsorption selectivities of JUC-220 for C_(3)H_(8)/CH_(4)(5/85)and C_(2)H_(6)/CH_(4)(10/85)gas mixtures were as high as 736 and 46 respectively at 298 K and 1 bar.Specially,JUC-220 exhibited excellent trace adsorption performance of C_(3)H_(8)and C_(2)H_(6)as well as reverse adsorption behavior of C_(2)H_(6)/C_(2)H_(4).Thus,JUC-220 serves as an example of HKUST-like MOF with disorder for light hydrocarbons separation and the implementation of substitution which can be used to explore more porous MOFs.展开更多
Commercial3D reticular nickel foam and its composite structure were investigated on the sound absorption at200-2000Hz.The absorption performance of foam plates1?5layers(1-layer thickness:2.3mm;porosity:89%;average por...Commercial3D reticular nickel foam and its composite structure were investigated on the sound absorption at200-2000Hz.The absorption performance of foam plates1?5layers(1-layer thickness:2.3mm;porosity:89%;average pore-diameter:0.57mm)was found to be poor,and could be improved by adding backed cavum or front perforated thin sheet.The absorption coefficient could reach about0.4at1000-1600Hz for the composite structure of5-layer foam with a backed5mm-thick cavum,and even0.68at about1000Hz for that of2-layer foam with the same cavum and a perforated plate closely in front of the foam.展开更多
Current research on the various forms of autoscopic phenomena addresses the clinical and neurological correlates of out-of-body experiences, autoscopic hallucinations, and heautoscopy. Yet most of this research is bas...Current research on the various forms of autoscopic phenomena addresses the clinical and neurological correlates of out-of-body experiences, autoscopic hallucinations, and heautoscopy. Yet most of this research is based on functional magnetic resonance imaging results and focuses predominantly on abnormal cortical activity. Previously we proposed that visual consciousness resulted from the dynamic retinogeniculo-cortical oscillations, such that the photoreceptors dynamically integrated with visual and other vision-associated cortices, and was theorized to be mapped out by photoreceptor discs and rich retinal networks which synchronized with the retinotopic mapping and the associated cortex. The feedback from neural input that is received from the thalamus and cortex via retinogeniculo-cortical oscillations and sent to the retina is multifold higher than feed-forward input to the cortex. This can effectively translate into out-of-body experiences projected onto the screen formed by the retina as it is perceived via feedback and feed-forward oscillations from the reticular thalamic nucleus, or “internal searchlight”. This article explores the role of the reticular thalamic nucleus and the retinogeniculo-cortical oscillations as pivotal internal components in vision and various autoscopic phenomena.展开更多
AIM:To investigate thickness characteristics and vascular plexuses in retinas with reticular pseudodrusen(RPD)as an early detection strategy for age-related macular degeneration(AMD).METHODS:This retrospective study i...AIM:To investigate thickness characteristics and vascular plexuses in retinas with reticular pseudodrusen(RPD)as an early detection strategy for age-related macular degeneration(AMD).METHODS:This retrospective study included 24 subjects(33 eyes)with RPD and 25 heathy control subjects(34 eyes).The superficial capillary plexus(SCP)and the deep capillary plexus(DCP)of the retinal posterior poles were investigated with optical coherence tomography angiography(OCTA).Retinal thicknesses and vessel densities were analyzed statistically.RESULTS:The general retinal thicknesses of RPD eyes were significantly decreased(95%CI-14.080,-0.655;P=0.032).The vessel densities of DCP in RPD eyes were significantly increased in the global(95%CI 1.067,7.312;P=0.027),parafoveal(95%CI 0.417,5.241;P=0.022),and perifoveal(95%CI 0.181,6.842;P=0.039)quadrants.However,the vessel densities of the SCP were rarely increased in the eyes with RPD.CONCLUSION:The thinning of retinas in the RPD group suggests a reduction in the number of cells.Additionally,the increased vessel density of the DCP in retinas with RPD indicates a greater demand for blood supply,possibly due to the hypoxia induced RPD compensation caused by RPD in the outer retina.This study highlights the pathological risks associated with RPD and emphasizes the importance of early intervention to retard the progression of AMD.展开更多
Emerging as an outperformed class of metal-organic frameworks(MOFs),square-octahedron(soc)topology MOFs(soc-MOFs)feature superior properties of high porosity,large gas storage capacity,and excellent thermal/chemical s...Emerging as an outperformed class of metal-organic frameworks(MOFs),square-octahedron(soc)topology MOFs(soc-MOFs)feature superior properties of high porosity,large gas storage capacity,and excellent thermal/chemical stability.We report here an iron based soc-MOF,denoted as Fe-pbpta(H4pbpta=4,4',4'',4'''-(1,4-phenylenbis(pyridine-4,2-6-triyl))-tetrabenzoic acid)possessing a very high Brunauer,Emmett and Teller(BET)surface area of 4,937 m2/g and a large pore volume of 2.15 cm3/g.The MOF demonstrates by far the highest gravimetric uptake of 369 cm3(STP)/g under the DOE operational storage conditions(35 bar and 298 K)and a high volumetric deliverable capacity of 192 cc/cc at 298 K and 65 bar.Furthermore,Fe-pbpta exhibits high thermal and aqueous stability making it a promising candidate for on-board methane storage.展开更多
The design criteria for metal-organic frameworks(MOFs)have been established by evaluating the rela-tionship between their key characteristics and magnesium-ion conductivity based on three types of sec-ondary building ...The design criteria for metal-organic frameworks(MOFs)have been established by evaluating the rela-tionship between their key characteristics and magnesium-ion conductivity based on three types of sec-ondary building blocks(Zn_(4)O(CO_(2))_(6):MOF-5 and MOF-177;Cu_(2)(CO_(2))4:MOF-199,MOF-143,MOF-14,and MOF-399;Cu_(2)O_(2)(CO_(2))2:Cu-MOF-74)to achieve pseudo-solid-state magnesium-ion conduction.We found that open-metal sites and channel layouts play a pivotal role in promoting magnesium-ion transport dy-namics at reduced activation energy,transforming MOF scaffolds into ionic-channel analogs.X-ray ab-sorption spectroscopy combined with Raman and Fourier-transform infrared spectroscopy predicted the chemical environment,solvents,and anions that occupied coordinatively unsaturated metal sites.The chemical compositions of electrolytes determined by^(1)H-NMR(nuclear magnetic resonance)and organic elemental analysis confirmed that isoreticular expansion increases the molar percentage of charge carri-ers,providing high conductivity.The current research systematically reveals the impacts of different MOF characteristics on ionic conduction performance,paving the way for the construction of a new class of fast and selective multivalent-ion pseudo-solid electrolytes.展开更多
High-resolution exploration for lithologic targets confronted with difficulties due to the original brought out from geophysical and geologic characteristics of the loess hills and the very thick deserts in Ordos. Sci...High-resolution exploration for lithologic targets confronted with difficulties due to the original brought out from geophysical and geologic characteristics of the loess hills and the very thick deserts in Ordos. Scientific research since mid 1990s has conducted three acquisition techniques including the high-resolution crooked line survey in valleys, high-resolution multiple straight line survey and 3D survey, under different surface conditions and for different geological targets.展开更多
Zirconium-based metal-organic frameworks(Zr-MOFs)have been explored for applications including but not limited to water adsorption,gas storage and separation,heterogeneous catalysis,and chemical sensing.Zr-MOFs serve ...Zirconium-based metal-organic frameworks(Zr-MOFs)have been explored for applications including but not limited to water adsorption,gas storage and separation,heterogeneous catalysis,and chemical sensing.Zr-MOFs serve as a major class of functional MOFs thanks to their high thermal,chemical and hydrolytic stability,large surface area,and tunable structures with the versatile connectivity.In this work,we highlight the design and synthesis of zirconium-based MOFs as well as their applications.Specifically,we demonstrate how reticular chemistry can direct the rational design and synthesis of functional ZrMOFs and describe their structure–property relationship.In addition,we feature synthetic strategies,including isoreticular expansion,linker functionalization,node functionalization,and defect engineering,as toolkits to construct tailored material for specific applications.展开更多
This paper sets out to demonstrate that scraping of the flat dorsal surface of human dermis with a scalpel blade and cell plating without centrifugation can lead to the recognition and identification of the individual...This paper sets out to demonstrate that scraping of the flat dorsal surface of human dermis with a scalpel blade and cell plating without centrifugation can lead to the recognition and identification of the individual packing micro pattern of dermal reticular fibroblasts at confluence. The characteristic alignment of papillary and reticular fibroblasts at right angles to each other led to the positive identification of reticular fibroblasts. A non-enzymatic means of sub-culturing (passaging), which yields fully functional, healthy cells with normal, phenotypic morphology is also described. Implications for published subcutaneous wound healing studies are discussed as well as the confluent reticular fibroblast configuration, interpreted as ananatomic site identity code,which may be the address of a specific fibroblast gene pattern expression.展开更多
There were two stages in the history of the studies on ascending reticular activating system of the brain(ARAS). The first stage began with the ARAS discovery by Magoun and Moruzzi and the following investigations usi...There were two stages in the history of the studies on ascending reticular activating system of the brain(ARAS). The first stage began with the ARAS discovery by Magoun and Moruzzi and the following investigations using the methods of stimulation and lesion at that time mainly in acute cats. These studies led to the hypothesis of a "diffuse"and "unspecific" ARAS of the brain stem. The second stage was associated with using more precise neurophysiological and histochemical methods mainly in chronically operated free-moving cats and rats. By 2010, the idea of the ARAS as an organized hierarchy of the cerebral "waking centers" distributed along the entire cerebral axis and releasing all the known neuromediators of low molecular weight together with the most important neuropeptides was formulated. To date, the aforementioned hypothesis has been revised again. The glutamatergic activating system has been discovered and described in detail. Presumably, this system is responsible for the appearance of electroencephalogram(EEG) arousal reaction and maintenance of the neocortex in the state of tonic depolarization during wakefulness and rapid eye movement(REM)sleep. Its destruction results in a deep comatose-like state. At the same time, the activity of all other "waking centers" is probably the result of the cortical activation.展开更多
Electrochemical CO2 reduction(ECR)represents a promising strategy for utilizing CO2,an industrial waste,as an abundant and cheap carbon source for organic synthesis as well as storing intermittent renewable electricit...Electrochemical CO2 reduction(ECR)represents a promising strategy for utilizing CO2,an industrial waste,as an abundant and cheap carbon source for organic synthesis as well as storing intermittent renewable electricity from renewable sources.Efficient electrocatalysts allowing CO2 to be reduced selectively and actively are crucial since the ECR is a complex and sluggish process producing a variety of products.Metal-organic frameworks(MOFs)and covalentorganic frameworks(COFs)have emerged as versatile materials applicable in many fields due to their unique properties including high surface areas and tunable pore channels.Besides,the emerging reticular chemistry makes tuning their features on the atomic/molecular levels possible,thereby lending credence to the prospect of their utilizations.Herein,an overview of recent progress in employing framework material-based catalysts,including MOFs,COFs and their derivatives,for ECR is provided.The pertinent challenges,future trends,and opportunities associated with those systems are also discussed.展开更多
A model of synapse-astrocyte interactions is proposed which enables repeated neuron-to-neuron connections from the single synapse to the network level. Specifically, the possibility that astrocytes may be organized in...A model of synapse-astrocyte interactions is proposed which enables repeated neuron-to-neuron connections from the single synapse to the network level. Specifically, the possibility that astrocytes may be organized in networks and processes of a single astrocyte may enable intracellular signaling loops via gap junctions is suggested as a plausible biophysical correlate for hierarchical signaling organization of cyclic pathways. This process ultimately translates to abstract planning, intention and execution of complex actions. The formalism applied is called proemial counting and it enables the generation of cycles of various length in the astroglial network, interpreted as intended action programs. Furthermore, the implementation of a model of the reticular formation in a robot brain based on glial-neuronal interactions is suggested. Finally, the implementation of robot brains with self-reflexive capabilities is discussed.展开更多
The main task of cancer vaccines is to deliver tumorspecifc antigens to antigen-presenting cells for immune recognition that can lead to potent and durable immune response against treated tumor. Using photodynamic the...The main task of cancer vaccines is to deliver tumorspecifc antigens to antigen-presenting cells for immune recognition that can lead to potent and durable immune response against treated tumor. Using photodynamic therapy (PDT)-generated vaccines as an example of autologous whole-cell cancer vaccines, the importance is discussed of the expression of death-associated molecules on cancer vaccine cells. This aspect appears critical for the optimal capture of vaccine cells by host’s sentinel phagocytes in order that the tumor antigenic material is processed and presented for immune recognition and elimination of targeted malignancy. It is shown that changing death pattern of vaccine cells by agents modulating apoptosis, autophagy or necrosis can significantly alter the therapeutic impact of PDT-generated vaccines. Improved therapeutic effect was observed with inhibitors of necrosis/necroptosis using IM-54, necrostatin-1 or necrostatin-7, as well as with lethal autophagy inducer STF62247. In contrast, reduced vaccine potency was found in case of treating vaccine cells with apoptosis inhibitors or lethal autophagy inhibitor spautin-1. Therefore, PDT-generated cancer vaccine cells undergoing apoptosis or lethal autophagy are much more likely to produce therapeutic benefit than vaccine cells that are necrotic. These fndings warrant further detailed examination of the strategy using cell death modulating agents for the enhancement of the efficacy of cancer vaccines.展开更多
This study was designed to evaluate the hepatoprotective and ameliorative effects of aqueous extract of Moringa oleifera (MO) leaves on the histologyof liver and hepatic reticular fibres integrity of adult Wistar rats...This study was designed to evaluate the hepatoprotective and ameliorative effects of aqueous extract of Moringa oleifera (MO) leaves on the histologyof liver and hepatic reticular fibres integrity of adult Wistar rats following lead-induced hepatotoxicity. Twenty four adult Wistar rats, weighing 180 - 220 g, randomly assigned into four groups of six animals each were used for the study. Lead and Moringa oleifera were given orally to the rats. 24 hours after the last administration, animals were sacrificed, blood obtained by cardiac puncture and liver excised, fixed in 10% phosphate buffered formalin for histological and histochemical analysis. The activities of aspartate amino transferase (AST), alanine amino transferase (ALT) and alkaline phosphatase (ALP) were used as markers of hepatotoxicity and catalase (CAT) activity were used as marker to evaluate the anti-oxidant status of the tissue. Result showed that lead treatment increased markers of hepatic damage (ALT, AST and ALP) and decreased CAT activities. Histological studies reveal alterations of hepatic structure including hepatocytic vacuolations, sinuosoidal congestion and loss of reticular fibres following lead treatment. Treatment with MO prevented and reversed lead induced hepatic damage. In conclusion, this study shows that Moringa oleifera leaf extract has an appreciable ability to prevent hepatotoxicity caused by lead, partly as result of its chemical constituents which has hepatoprotective properties.展开更多
Running at altitude is gaining greater popularity but it may expose participants to the risk of acute mountain sickness (AMS). The study investigated electroencephalographic (EEG) changes and eventual symptoms suggest...Running at altitude is gaining greater popularity but it may expose participants to the risk of acute mountain sickness (AMS). The study investigated electroencephalographic (EEG) changes and eventual symptoms suggestive of AMS in 5 well-trained lowland native male runners (average age, 38.2 ? 4.6 years;VO2 peak 61.4 ? 2.7 mL?kg–1?min–1 at sea level;best marathon performance at sea level under 3 hours), who completed a marathon at 4300 m altitude. EEG, percentage of peripheral arterial oxygen saturation (% SpaO2) and heart rate (HR) were recorded during wakefulness at rest (supine position) and in comfort: 1) at sea level;2) at 3600 m after 32 - 38 hours of acute acclimatization;3) at 4300 m after 145 - 153 hours of chronic acclimatization;and 4) at 4300 m immediately after a marathon race. Symptoms of AMS were evaluated with the Lake Louise questionnaire before any ECG recording. There was a significant decrease in low-voltage high-frequency activities at rest after acute hypoxic-hypobaric exposure at 3600 m as compared to sea level. After six days of acclimatization at 4300 m there was a significant increase in the power of low-voltage high-frequency activities, particularly beta and gamma, indicating an aroused waking state and an integrated activity across widely distributed cortical regions. An increase in the power of low-voltage high-frequency activities over the entire cortex was observed, particularly after completion of the marathon at 4300 m. The increase in the high-frequency activities was probably due to direct and indirect reflex activation of the forebrain and reticular activating system involved in behavioral and metabolic integration of autonomic control and arousal and due to residual activation of the somatomotor and parietal cortex after the end of the marathon. Lake Louise score always resulted lower than 3, indicating no signs of AMS in all the runners. The results of this study indicate that in well-trained and acclimatized athletes, arousal has a protective role in preventing excessiv展开更多
基金supported by the National Natural Science Foundation of China (31571090 and 31771167)the National Key Research and Development Program (2016YFC1306700)+1 种基金the National High Technology Research and Development Program (863 Program) of China (2015AA020512)the Fundamental Research Funds for the Central Universities of China (2017FZA7003)
文摘The GABAergic neurons in the parafacial zone(PZ) play an important role in sleep-wake regulation and have been identified as part of a sleep-promoting center in the brainstem, but the long-range connections mediating this function remain poorly characterized. Here, we performed whole-brain mapping of both the inputs and outputs of the GABAergic neurons in the PZ of the mouse brain. We used the modified rabies virus Env A-DG-Ds Red combined with a Cre/lox P gene-expression strategy to map the direct monosynaptic inputs to the GABAergic neurons in the PZ, and found that they receive inputs mainly from the hypothalamic area, zona incerta, and parasubthalamic nucleus in the hypothalamus; the substantia nigra, pars reticulata and deep mesencephalic nucleus in the midbrain;and the intermediate reticular nucleus and medial vestibular nucleus(parvocellular part) in the pons and medulla.We also mapped the axonal projections of the PZ GABAergic neurons with adeno-associated virus, and defined the reciprocal connections of the PZ GABAergic neurons with their input and output nuclei. The newlyfound inputs and outputs of the PZ were also listed compared with the literature. This cell-type-specific neuronal whole-brain mapping of the PZ GABAergic neurons may reveal the circuits underlying various functions such as sleep-wake regulation.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean Government(MSIP)(No.2018R1A2B6000996to SHJ)
文摘Elucidation of critical brain areas or structures that are responsible for recovery of impaired consciousness in patients with disorders of consciousness is important because it can provide information that is useful when developing therapeutic strategies for neurorehabilitation or neurointervention in patients with disorders of consciousness.In this review,studies that have demonstrated brain changes during recovery of impaired consciousness were reviewed.These studies used positron emission tomography,electroencephalography/transcranial magnetic stimulation,diffusion tensor tractography,and diffusion tensor tractography/electroencephalography.The majority of these studies reported on the importance of supratentorial areas or structures in the recovery of impaired consciousness.The important brain areas or structures that were identified were the prefrontal cortex,basal forebrain,anterior cingulate cortex,and parietal cortex.These results have a clinically important implication that these brain areas or structures can be target areas for neurorehabilitation or neurointervention in patients with disorders of consciousness.However,most of studies were case reports;therefore,further original studies involving larger numbers of patients with disorders of consciousness are warranted.In addition,more detailed information on the brain areas or structures that are relevant to the recovery of impaired consciousness is needed.
基金supported by the Fundamental-Core National Project of the National Research Foundation(NRF)funded by the Ministry of Science and ICT,Republic of Korea(2022R1F1A1072739).
文摘Porous organic frameworks(POFs)have become a highly sought-after research domain that offers a promising avenue for developing cutting-edge nanostructured materials,both in their pristine state and when subjected to various chemical and structural modifications.Metal–organic frameworks,covalent organic frameworks,and hydrogen-bonded organic frameworks are examples of these emerging materials that have gained significant attention due to their unique properties,such as high crystallinity,intrinsic porosity,unique structural regularity,diverse functionality,design flexibility,and outstanding stability.This review provides an overview of the state-of-the-art research on base-stable POFs,emphasizing the distinct pros and cons of reticular framework nanoparticles compared to other types of nanocluster materials.Thereafter,the review highlights the unique opportunity to produce multifunctional tailoring nanoparticles to meet specific application requirements.It is recommended that this potential for creating customized nanoparticles should be the driving force behind future synthesis efforts to tap the full potential of this multifaceted material category.
基金This research work was supported by the National Natural Science Foundation of China(Nos.21871105,21975096,and 21501064)。
文摘Metal-organic frameworks(MOFs)with HKUST-like tbo structures have been paid specific attention for gas sorption and separation because of their specific pore features.According to the geometric similarity of spirobifluorene and[Cu_(2)(O_(2)CR)_(4)]paddlewheel secondary building units(Cu_(2)SBUs)in HKUST-1,we attempted to rationally construct a HKUST-like MOF by a substitution strategy.Using a judiciously designed octatopic carboxylate ligand,a copper-organic framework,JUC-220,was synthesized.The crystals of JUC-220 exhibited characteristic features in cubic with disorder,possibly due to the disorder substitution and high symmetry of tbo topology.Two related HKUST-like structure models were considered.Thanks to the suitable pore size and specific pore shapes,the adsorption selectivities of JUC-220 for C_(3)H_(8)/CH_(4)(5/85)and C_(2)H_(6)/CH_(4)(10/85)gas mixtures were as high as 736 and 46 respectively at 298 K and 1 bar.Specially,JUC-220 exhibited excellent trace adsorption performance of C_(3)H_(8)and C_(2)H_(6)as well as reverse adsorption behavior of C_(2)H_(6)/C_(2)H_(4).Thus,JUC-220 serves as an example of HKUST-like MOF with disorder for light hydrocarbons separation and the implementation of substitution which can be used to explore more porous MOFs.
基金Project (C16) supported by the Testing Foundation of Beijing Normal University,China
文摘Commercial3D reticular nickel foam and its composite structure were investigated on the sound absorption at200-2000Hz.The absorption performance of foam plates1?5layers(1-layer thickness:2.3mm;porosity:89%;average pore-diameter:0.57mm)was found to be poor,and could be improved by adding backed cavum or front perforated thin sheet.The absorption coefficient could reach about0.4at1000-1600Hz for the composite structure of5-layer foam with a backed5mm-thick cavum,and even0.68at about1000Hz for that of2-layer foam with the same cavum and a perforated plate closely in front of the foam.
文摘Current research on the various forms of autoscopic phenomena addresses the clinical and neurological correlates of out-of-body experiences, autoscopic hallucinations, and heautoscopy. Yet most of this research is based on functional magnetic resonance imaging results and focuses predominantly on abnormal cortical activity. Previously we proposed that visual consciousness resulted from the dynamic retinogeniculo-cortical oscillations, such that the photoreceptors dynamically integrated with visual and other vision-associated cortices, and was theorized to be mapped out by photoreceptor discs and rich retinal networks which synchronized with the retinotopic mapping and the associated cortex. The feedback from neural input that is received from the thalamus and cortex via retinogeniculo-cortical oscillations and sent to the retina is multifold higher than feed-forward input to the cortex. This can effectively translate into out-of-body experiences projected onto the screen formed by the retina as it is perceived via feedback and feed-forward oscillations from the reticular thalamic nucleus, or “internal searchlight”. This article explores the role of the reticular thalamic nucleus and the retinogeniculo-cortical oscillations as pivotal internal components in vision and various autoscopic phenomena.
基金Supported by the“Municipal School(College)Joint Funding(Zhongnanshan Medical Foundation of Guangdong Province)Project”of Guangzhou Municipal Science and Technology Bureau(No.202201020458).
文摘AIM:To investigate thickness characteristics and vascular plexuses in retinas with reticular pseudodrusen(RPD)as an early detection strategy for age-related macular degeneration(AMD).METHODS:This retrospective study included 24 subjects(33 eyes)with RPD and 25 heathy control subjects(34 eyes).The superficial capillary plexus(SCP)and the deep capillary plexus(DCP)of the retinal posterior poles were investigated with optical coherence tomography angiography(OCTA).Retinal thicknesses and vessel densities were analyzed statistically.RESULTS:The general retinal thicknesses of RPD eyes were significantly decreased(95%CI-14.080,-0.655;P=0.032).The vessel densities of DCP in RPD eyes were significantly increased in the global(95%CI 1.067,7.312;P=0.027),parafoveal(95%CI 0.417,5.241;P=0.022),and perifoveal(95%CI 0.181,6.842;P=0.039)quadrants.However,the vessel densities of the SCP were rarely increased in the eyes with RPD.CONCLUSION:The thinning of retinas in the RPD group suggests a reduction in the number of cells.Additionally,the increased vessel density of the DCP in retinas with RPD indicates a greater demand for blood supply,possibly due to the hypoxia induced RPD compensation caused by RPD in the outer retina.This study highlights the pathological risks associated with RPD and emphasizes the importance of early intervention to retard the progression of AMD.
基金the U.S.Department of Energy's Office of Energy Efficiency and Renewable Energy under the Hydrogen and Fuel Cell Technologies and Vehicle Technologies Offices under Award Number DE-EE0008812.S.K.acknowledges the financial support from the University Grants Commission(UGC),New Delhi,India(No.F 5-80/2014(IC)).ChemMatCARS Sector 15 is principally supported by the Divisions of Chemistry(CHE)and Materials Research(DMR),National Science Foundation,under Grant Number NSF/CHE-1346572.Use of the Advanced Photon Source,an Office of Science User Facility operated for the U.S.Department of Energy(DOE)Office of Science by Argonne National Laboratory,was supported by the U.S.DOE under Contract No.DE-AC02-06CH11357.G.V.would further like to acknowledge Jason Exley(Sales Engineer,Micromeritics USA)for help and support provided with the measurements and the HKUST reference data.
文摘Emerging as an outperformed class of metal-organic frameworks(MOFs),square-octahedron(soc)topology MOFs(soc-MOFs)feature superior properties of high porosity,large gas storage capacity,and excellent thermal/chemical stability.We report here an iron based soc-MOF,denoted as Fe-pbpta(H4pbpta=4,4',4'',4'''-(1,4-phenylenbis(pyridine-4,2-6-triyl))-tetrabenzoic acid)possessing a very high Brunauer,Emmett and Teller(BET)surface area of 4,937 m2/g and a large pore volume of 2.15 cm3/g.The MOF demonstrates by far the highest gravimetric uptake of 369 cm3(STP)/g under the DOE operational storage conditions(35 bar and 298 K)and a high volumetric deliverable capacity of 192 cc/cc at 298 K and 65 bar.Furthermore,Fe-pbpta exhibits high thermal and aqueous stability making it a promising candidate for on-board methane storage.
基金acknowledges the Guangdong-Hong Kong-Macao Joint Laboratory(Grant No.2019B121205001)the Macao Science and Technology Development Fund(FDCT)for funding(Project No.0098/2020/A2)+3 种基金this work was also partially supported by the Science and Technology Program of Guangdong Province of China(Grant No.2020A050515007)the Multi-Year Research Grant(MYRG)from University of Macao(Project No.MYRG2019-00055-IAPME)support by FDCT of Macao under Grants 0015/2021/AGJ and 0130/2019/A3by the University of Macao under Grant MYRG2018-00088-IAPME.
文摘The design criteria for metal-organic frameworks(MOFs)have been established by evaluating the rela-tionship between their key characteristics and magnesium-ion conductivity based on three types of sec-ondary building blocks(Zn_(4)O(CO_(2))_(6):MOF-5 and MOF-177;Cu_(2)(CO_(2))4:MOF-199,MOF-143,MOF-14,and MOF-399;Cu_(2)O_(2)(CO_(2))2:Cu-MOF-74)to achieve pseudo-solid-state magnesium-ion conduction.We found that open-metal sites and channel layouts play a pivotal role in promoting magnesium-ion transport dy-namics at reduced activation energy,transforming MOF scaffolds into ionic-channel analogs.X-ray ab-sorption spectroscopy combined with Raman and Fourier-transform infrared spectroscopy predicted the chemical environment,solvents,and anions that occupied coordinatively unsaturated metal sites.The chemical compositions of electrolytes determined by^(1)H-NMR(nuclear magnetic resonance)and organic elemental analysis confirmed that isoreticular expansion increases the molar percentage of charge carri-ers,providing high conductivity.The current research systematically reveals the impacts of different MOF characteristics on ionic conduction performance,paving the way for the construction of a new class of fast and selective multivalent-ion pseudo-solid electrolytes.
文摘High-resolution exploration for lithologic targets confronted with difficulties due to the original brought out from geophysical and geologic characteristics of the loess hills and the very thick deserts in Ordos. Scientific research since mid 1990s has conducted three acquisition techniques including the high-resolution crooked line survey in valleys, high-resolution multiple straight line survey and 3D survey, under different surface conditions and for different geological targets.
基金support by the National Natural Science Foundation of China (22201247)the startup funding from Zhejiang University。
文摘Zirconium-based metal-organic frameworks(Zr-MOFs)have been explored for applications including but not limited to water adsorption,gas storage and separation,heterogeneous catalysis,and chemical sensing.Zr-MOFs serve as a major class of functional MOFs thanks to their high thermal,chemical and hydrolytic stability,large surface area,and tunable structures with the versatile connectivity.In this work,we highlight the design and synthesis of zirconium-based MOFs as well as their applications.Specifically,we demonstrate how reticular chemistry can direct the rational design and synthesis of functional ZrMOFs and describe their structure–property relationship.In addition,we feature synthetic strategies,including isoreticular expansion,linker functionalization,node functionalization,and defect engineering,as toolkits to construct tailored material for specific applications.
文摘This paper sets out to demonstrate that scraping of the flat dorsal surface of human dermis with a scalpel blade and cell plating without centrifugation can lead to the recognition and identification of the individual packing micro pattern of dermal reticular fibroblasts at confluence. The characteristic alignment of papillary and reticular fibroblasts at right angles to each other led to the positive identification of reticular fibroblasts. A non-enzymatic means of sub-culturing (passaging), which yields fully functional, healthy cells with normal, phenotypic morphology is also described. Implications for published subcutaneous wound healing studies are discussed as well as the confluent reticular fibroblast configuration, interpreted as ananatomic site identity code,which may be the address of a specific fibroblast gene pattern expression.
文摘There were two stages in the history of the studies on ascending reticular activating system of the brain(ARAS). The first stage began with the ARAS discovery by Magoun and Moruzzi and the following investigations using the methods of stimulation and lesion at that time mainly in acute cats. These studies led to the hypothesis of a "diffuse"and "unspecific" ARAS of the brain stem. The second stage was associated with using more precise neurophysiological and histochemical methods mainly in chronically operated free-moving cats and rats. By 2010, the idea of the ARAS as an organized hierarchy of the cerebral "waking centers" distributed along the entire cerebral axis and releasing all the known neuromediators of low molecular weight together with the most important neuropeptides was formulated. To date, the aforementioned hypothesis has been revised again. The glutamatergic activating system has been discovered and described in detail. Presumably, this system is responsible for the appearance of electroencephalogram(EEG) arousal reaction and maintenance of the neocortex in the state of tonic depolarization during wakefulness and rapid eye movement(REM)sleep. Its destruction results in a deep comatose-like state. At the same time, the activity of all other "waking centers" is probably the result of the cortical activation.
基金financially supported by the National Natural Science Foundation of China(21671096 and 11775105)Shenzhen Peacock Plan(KQTD2016022620054656)。
文摘Electrochemical CO2 reduction(ECR)represents a promising strategy for utilizing CO2,an industrial waste,as an abundant and cheap carbon source for organic synthesis as well as storing intermittent renewable electricity from renewable sources.Efficient electrocatalysts allowing CO2 to be reduced selectively and actively are crucial since the ECR is a complex and sluggish process producing a variety of products.Metal-organic frameworks(MOFs)and covalentorganic frameworks(COFs)have emerged as versatile materials applicable in many fields due to their unique properties including high surface areas and tunable pore channels.Besides,the emerging reticular chemistry makes tuning their features on the atomic/molecular levels possible,thereby lending credence to the prospect of their utilizations.Herein,an overview of recent progress in employing framework material-based catalysts,including MOFs,COFs and their derivatives,for ECR is provided.The pertinent challenges,future trends,and opportunities associated with those systems are also discussed.
文摘A model of synapse-astrocyte interactions is proposed which enables repeated neuron-to-neuron connections from the single synapse to the network level. Specifically, the possibility that astrocytes may be organized in networks and processes of a single astrocyte may enable intracellular signaling loops via gap junctions is suggested as a plausible biophysical correlate for hierarchical signaling organization of cyclic pathways. This process ultimately translates to abstract planning, intention and execution of complex actions. The formalism applied is called proemial counting and it enables the generation of cycles of various length in the astroglial network, interpreted as intended action programs. Furthermore, the implementation of a model of the reticular formation in a robot brain based on glial-neuronal interactions is suggested. Finally, the implementation of robot brains with self-reflexive capabilities is discussed.
基金Supported by The Canadian Cancer SocietyNo.#701132
文摘The main task of cancer vaccines is to deliver tumorspecifc antigens to antigen-presenting cells for immune recognition that can lead to potent and durable immune response against treated tumor. Using photodynamic therapy (PDT)-generated vaccines as an example of autologous whole-cell cancer vaccines, the importance is discussed of the expression of death-associated molecules on cancer vaccine cells. This aspect appears critical for the optimal capture of vaccine cells by host’s sentinel phagocytes in order that the tumor antigenic material is processed and presented for immune recognition and elimination of targeted malignancy. It is shown that changing death pattern of vaccine cells by agents modulating apoptosis, autophagy or necrosis can significantly alter the therapeutic impact of PDT-generated vaccines. Improved therapeutic effect was observed with inhibitors of necrosis/necroptosis using IM-54, necrostatin-1 or necrostatin-7, as well as with lethal autophagy inducer STF62247. In contrast, reduced vaccine potency was found in case of treating vaccine cells with apoptosis inhibitors or lethal autophagy inhibitor spautin-1. Therefore, PDT-generated cancer vaccine cells undergoing apoptosis or lethal autophagy are much more likely to produce therapeutic benefit than vaccine cells that are necrotic. These fndings warrant further detailed examination of the strategy using cell death modulating agents for the enhancement of the efficacy of cancer vaccines.
文摘This study was designed to evaluate the hepatoprotective and ameliorative effects of aqueous extract of Moringa oleifera (MO) leaves on the histologyof liver and hepatic reticular fibres integrity of adult Wistar rats following lead-induced hepatotoxicity. Twenty four adult Wistar rats, weighing 180 - 220 g, randomly assigned into four groups of six animals each were used for the study. Lead and Moringa oleifera were given orally to the rats. 24 hours after the last administration, animals were sacrificed, blood obtained by cardiac puncture and liver excised, fixed in 10% phosphate buffered formalin for histological and histochemical analysis. The activities of aspartate amino transferase (AST), alanine amino transferase (ALT) and alkaline phosphatase (ALP) were used as markers of hepatotoxicity and catalase (CAT) activity were used as marker to evaluate the anti-oxidant status of the tissue. Result showed that lead treatment increased markers of hepatic damage (ALT, AST and ALP) and decreased CAT activities. Histological studies reveal alterations of hepatic structure including hepatocytic vacuolations, sinuosoidal congestion and loss of reticular fibres following lead treatment. Treatment with MO prevented and reversed lead induced hepatic damage. In conclusion, this study shows that Moringa oleifera leaf extract has an appreciable ability to prevent hepatotoxicity caused by lead, partly as result of its chemical constituents which has hepatoprotective properties.
文摘Running at altitude is gaining greater popularity but it may expose participants to the risk of acute mountain sickness (AMS). The study investigated electroencephalographic (EEG) changes and eventual symptoms suggestive of AMS in 5 well-trained lowland native male runners (average age, 38.2 ? 4.6 years;VO2 peak 61.4 ? 2.7 mL?kg–1?min–1 at sea level;best marathon performance at sea level under 3 hours), who completed a marathon at 4300 m altitude. EEG, percentage of peripheral arterial oxygen saturation (% SpaO2) and heart rate (HR) were recorded during wakefulness at rest (supine position) and in comfort: 1) at sea level;2) at 3600 m after 32 - 38 hours of acute acclimatization;3) at 4300 m after 145 - 153 hours of chronic acclimatization;and 4) at 4300 m immediately after a marathon race. Symptoms of AMS were evaluated with the Lake Louise questionnaire before any ECG recording. There was a significant decrease in low-voltage high-frequency activities at rest after acute hypoxic-hypobaric exposure at 3600 m as compared to sea level. After six days of acclimatization at 4300 m there was a significant increase in the power of low-voltage high-frequency activities, particularly beta and gamma, indicating an aroused waking state and an integrated activity across widely distributed cortical regions. An increase in the power of low-voltage high-frequency activities over the entire cortex was observed, particularly after completion of the marathon at 4300 m. The increase in the high-frequency activities was probably due to direct and indirect reflex activation of the forebrain and reticular activating system involved in behavioral and metabolic integration of autonomic control and arousal and due to residual activation of the somatomotor and parietal cortex after the end of the marathon. Lake Louise score always resulted lower than 3, indicating no signs of AMS in all the runners. The results of this study indicate that in well-trained and acclimatized athletes, arousal has a protective role in preventing excessiv