A new and falsifiable realist interpretation of quantum mechanics is examined in relation to the sum over histories concept, pilot wave theory and the many-worlds interpretation. This electric charge/transactional mod...A new and falsifiable realist interpretation of quantum mechanics is examined in relation to the sum over histories concept, pilot wave theory and the many-worlds interpretation. This electric charge/transactional model explains how the single electron double-slit experiment produces extremely localized endpoints from diffracted wavicles, why these endpoints are scattered around the entire surface of the absorber screen, and why these points of contact result in the characteristic fringe pattern as they accumulate. Advanced waves and substantive electric charge effects in the double-slit experiment are postulated, then this hypothesis is supported by a quantitative analysis of electron emission in comparison to lightning. The wider implications if advanced waves and electric charge distribution prove to be significant factors in the double-slit experiment are discussed, including possible parallels with meteorological and neurological phenomena.展开更多
Einstein guessed that the macroscopic electromagnetic wave is built by thousands of photons, however, no one has offered a theory about how the macroscopic electromagnetic wave is built from photons. A concrete theory...Einstein guessed that the macroscopic electromagnetic wave is built by thousands of photons, however, no one has offered a theory about how the macroscopic electromagnetic wave is built from photons. A concrete theory about photons is needed to answer this question. Current theory for photons is Maxwell’s equation which has the solution of waves, but it is difficult to describe the photon as a particle. There is the paradox problem of wave-particle duality. This article offers one solution to solve this problem by introducing the normalized mutual energy flow. The interaction of the retarded wave and advanced wave produce the mutual energy flow. The mutual energy flow satisfies the mutual energy flow theorem. The mutual energy flow theorem tells us that the energy that goes through each surface between the emitter and the absorber is all same. That means the mutual energy flow is different in comparison to the waves. The wave, for example, the retarded wave, its amplitude is decreased with the distance from the source to the point of the field. The mutual energy flow does not decrease. The author noticed this and claimed that the photon is the mutual energy flow. In this article the author updated this claim that the photon is the normalized mutual energy flow. Here the normalization of mutual energy flow will normalize the mutual energy flow to the energy of a photon, which is E = hf. E is the energy of the photon;h is Planck constant;f is the frequency of the light. This normalization is similar to the normalization in quantum mechanics. After this normalization the relation between an electromagnetic wave and photon as a particle becomes clear. This article will prove that the macroscopic wave of an electromagnetic field can be built by thousands of normalized mutual energy flows, which describes the photons. The mutual energy flow is an interaction of the retarded wave and the advanced wave. The retarded wave and the advanced wave satisfy the Maxwell equations. There are two additional waves which are the t展开更多
With the use of a model Hamiltonian and retarded double time green’s function formalism, we obtain mathematical expressions for spin density wave and superconductivity parameters. The model reveals a distinct possibi...With the use of a model Hamiltonian and retarded double time green’s function formalism, we obtain mathematical expressions for spin density wave and superconductivity parameters. The model reveals a distinct possibility of the coexistence of magnetic phase and superconductivity, which are two usually irreconcilable cooperative phenomena. The work is motivated by the recent experimental evidences of coexistence of spin density wave and superconductivity in a number of FeAs-based superconductors. The theoretical results are then applied to show the coexistence of spin density wave and superconductivity in iron pnictide compound Ba1-xKxFe2As2 (0.2 ≤ x < 0.4).展开更多
A combination of the rainfall-runoff module of the Xin’anjiang model, the Muskingum routing method, the water stage simulating hydrologic method, the diffusion wave nonlinear water stage method, and the real-time err...A combination of the rainfall-runoff module of the Xin’anjiang model, the Muskingum routing method, the water stage simulating hydrologic method, the diffusion wave nonlinear water stage method, and the real-time error correction method is applied to the real-time flood forecasting and regulation of the Huai River with flood diversion and retarding areas. The Xin’anjiang model is used to forecast the flood discharge hydrograph of the upstream and tributary. The flood routing of the main channel and flood diversion areas is based on the Muskingum method. The water stage of the downstream boundary condition is calculated with the water stage simulating hydrologic method and the water stages of each cross section are calculated from downstream to upstream with the diffusion wave nonlinear water stage method. The input flood discharge hydrograph from the main channel to the flood diversion area is estimated with the fixed split ratio of the main channel discharge. The flood flow inside the flood retarding area is calculated as a reservoir with the water balance method. The faded-memory forgetting factor least square of error series is used as the real-time error correction method for forecasting discharge and water stage. As an example, the combined models were applied to flood forecasting and regulation of the upper reaches of the Huai River above Lutaizi during the 2007 flood season. The forecast achieves a high accuracy and the results show that the combined models provide a scientific way of flood forecasting and regulation for a complex watershed with flood diversion and retarding areas.展开更多
文摘A new and falsifiable realist interpretation of quantum mechanics is examined in relation to the sum over histories concept, pilot wave theory and the many-worlds interpretation. This electric charge/transactional model explains how the single electron double-slit experiment produces extremely localized endpoints from diffracted wavicles, why these endpoints are scattered around the entire surface of the absorber screen, and why these points of contact result in the characteristic fringe pattern as they accumulate. Advanced waves and substantive electric charge effects in the double-slit experiment are postulated, then this hypothesis is supported by a quantitative analysis of electron emission in comparison to lightning. The wider implications if advanced waves and electric charge distribution prove to be significant factors in the double-slit experiment are discussed, including possible parallels with meteorological and neurological phenomena.
文摘Einstein guessed that the macroscopic electromagnetic wave is built by thousands of photons, however, no one has offered a theory about how the macroscopic electromagnetic wave is built from photons. A concrete theory about photons is needed to answer this question. Current theory for photons is Maxwell’s equation which has the solution of waves, but it is difficult to describe the photon as a particle. There is the paradox problem of wave-particle duality. This article offers one solution to solve this problem by introducing the normalized mutual energy flow. The interaction of the retarded wave and advanced wave produce the mutual energy flow. The mutual energy flow satisfies the mutual energy flow theorem. The mutual energy flow theorem tells us that the energy that goes through each surface between the emitter and the absorber is all same. That means the mutual energy flow is different in comparison to the waves. The wave, for example, the retarded wave, its amplitude is decreased with the distance from the source to the point of the field. The mutual energy flow does not decrease. The author noticed this and claimed that the photon is the mutual energy flow. In this article the author updated this claim that the photon is the normalized mutual energy flow. Here the normalization of mutual energy flow will normalize the mutual energy flow to the energy of a photon, which is E = hf. E is the energy of the photon;h is Planck constant;f is the frequency of the light. This normalization is similar to the normalization in quantum mechanics. After this normalization the relation between an electromagnetic wave and photon as a particle becomes clear. This article will prove that the macroscopic wave of an electromagnetic field can be built by thousands of normalized mutual energy flows, which describes the photons. The mutual energy flow is an interaction of the retarded wave and the advanced wave. The retarded wave and the advanced wave satisfy the Maxwell equations. There are two additional waves which are the t
文摘With the use of a model Hamiltonian and retarded double time green’s function formalism, we obtain mathematical expressions for spin density wave and superconductivity parameters. The model reveals a distinct possibility of the coexistence of magnetic phase and superconductivity, which are two usually irreconcilable cooperative phenomena. The work is motivated by the recent experimental evidences of coexistence of spin density wave and superconductivity in a number of FeAs-based superconductors. The theoretical results are then applied to show the coexistence of spin density wave and superconductivity in iron pnictide compound Ba1-xKxFe2As2 (0.2 ≤ x < 0.4).
基金supported by the National Natural Science Foundation of China (Grant No 50479017)the Program for Changjiang Scholars and Innovative Research Teams in Universities (Grant No IRT071)
文摘A combination of the rainfall-runoff module of the Xin’anjiang model, the Muskingum routing method, the water stage simulating hydrologic method, the diffusion wave nonlinear water stage method, and the real-time error correction method is applied to the real-time flood forecasting and regulation of the Huai River with flood diversion and retarding areas. The Xin’anjiang model is used to forecast the flood discharge hydrograph of the upstream and tributary. The flood routing of the main channel and flood diversion areas is based on the Muskingum method. The water stage of the downstream boundary condition is calculated with the water stage simulating hydrologic method and the water stages of each cross section are calculated from downstream to upstream with the diffusion wave nonlinear water stage method. The input flood discharge hydrograph from the main channel to the flood diversion area is estimated with the fixed split ratio of the main channel discharge. The flood flow inside the flood retarding area is calculated as a reservoir with the water balance method. The faded-memory forgetting factor least square of error series is used as the real-time error correction method for forecasting discharge and water stage. As an example, the combined models were applied to flood forecasting and regulation of the upper reaches of the Huai River above Lutaizi during the 2007 flood season. The forecast achieves a high accuracy and the results show that the combined models provide a scientific way of flood forecasting and regulation for a complex watershed with flood diversion and retarding areas.