期刊文献+
共找到735篇文章
< 1 2 37 >
每页显示 20 50 100
A Restarted Conjugate Gradient Method for Ill-posed Problems 被引量:2
1
作者 Yan-fei WangLaboratory of Remote Sensing Information Sciences, Institute of Remote Sensing Applications, Chinese Academy of Sciences, P.O. Box 9718, Beijing 100101, ChinaState Key Laboratory of Scientific and Engineering Computing, Institute of Computational Mathematics and Scientific/Engineering computing, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100080, China 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2003年第1期31-40,共10页
Abstract This paper presents a restarted conjugate gradient iterative algorithm for solving ill-posed problems. The damped Morozov's discrepancy principle is used as a stopping rule. Numerical experiments are give... Abstract This paper presents a restarted conjugate gradient iterative algorithm for solving ill-posed problems. The damped Morozov's discrepancy principle is used as a stopping rule. Numerical experiments are given to illustrate the efficiency of the method. 展开更多
关键词 Keywords Ill-posed problems restarted CG damped discrepancy principle.
原文传递
Parallel computing study for the large-scale generalized eigenvalue problems in modal analysis 被引量:5
2
作者 FAN XuanHua CHEN Pu +1 位作者 WU RuiAn XIAO ShiFu 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2014年第3期477-489,共13页
In this paper we study the algorithms and their parallel implementation for solving large-scale generalized eigenvalue problems in modal analysis.Three predominant subspace algorithms,i.e.,Krylov-Schur method,implicit... In this paper we study the algorithms and their parallel implementation for solving large-scale generalized eigenvalue problems in modal analysis.Three predominant subspace algorithms,i.e.,Krylov-Schur method,implicitly restarted Arnoldi method and Jacobi-Davidson method,are modified with some complementary techniques to make them suitable for modal analysis.Detailed descriptions of the three algorithms are given.Based on these algorithms,a parallel solution procedure is established via the PANDA framework and its associated eigensolvers.Using the solution procedure on a machine equipped with up to 4800processors,the parallel performance of the three predominant methods is evaluated via numerical experiments with typical engineering structures,where the maximum testing scale attains twenty million degrees of freedom.The speedup curves for different cases are obtained and compared.The results show that the three methods are good for modal analysis in the scale of ten million degrees of freedom with a favorable parallel scalability. 展开更多
关键词 modal analysis parallel computing eigenvalue problems Krylov-Schur method implicitly restarted Arnoldi method Jacobi-Davidson method
原文传递
A Compact Heart Iteration for Large Eigenvalues Problems
3
作者 Achiya Dax 《Advances in Linear Algebra & Matrix Theory》 2022年第1期24-38,共15页
In this paper, we present a compact version of the Heart iteration. One that requires less matrix-vector products per iteration and attains faster convergence. The Heart iteration is a new type of Restarted Krylov met... In this paper, we present a compact version of the Heart iteration. One that requires less matrix-vector products per iteration and attains faster convergence. The Heart iteration is a new type of Restarted Krylov methods for calculating peripheral eigenvalues of symmetric matrices. The new framework avoids the Lanczos tridiagonalization process and the use of implicit restarts. This simplifies the restarting mechanism and allows the introduction of several modifications. Convergence is assured by a monotonicity property that pushes the computed Ritz values toward their limits. Numerical experiments illustrate the usefulness of the proposed approach. 展开更多
关键词 Large Sparse Matrices restarted Krylov Methods Exterior Eigenvalues Symmetric Matrices MONOTONICITY Starting Vectors
下载PDF
A New Type of Restarted Krylov Methods 被引量:1
4
作者 Achiya Dax 《Advances in Linear Algebra & Matrix Theory》 2017年第1期18-28,共11页
In this paper we present a new type of Restarted Krylov methods for calculating peripheral eigenvalues of symmetric matrices. The new framework avoids the Lanczos tridiagonalization process, and the use of polynomial ... In this paper we present a new type of Restarted Krylov methods for calculating peripheral eigenvalues of symmetric matrices. The new framework avoids the Lanczos tridiagonalization process, and the use of polynomial filtering. This simplifies the restarting mechanism and allows the introduction of several modifications. Convergence is assured by a monotonicity property that pushes the eigenvalues toward their limits. The Krylov matrices that we use lead to fast rate of convergence. Numerical experiments illustrate the usefulness of the proposed approach. 展开更多
关键词 restarted Krylov Methods EXTERIOR EIGENVALUES Symmetric Matrices MONOTONICITY STARTING VECTORS
下载PDF
An Efficient Decomposition Method for Solving Bratu’s Boundary Value Problem
5
作者 Mariam Al-Mazmumy Ahlam Al-Mutairi Kholoud Al-Zahrani 《American Journal of Computational Mathematics》 2017年第1期84-93,共10页
The purpose of this paper is to employ the Adomian Decomposition Method (ADM) and Restarted Adomian Decomposition Method (RADM) with new useful techniques to resolve Bratu’s boundary value problem by using a new inte... The purpose of this paper is to employ the Adomian Decomposition Method (ADM) and Restarted Adomian Decomposition Method (RADM) with new useful techniques to resolve Bratu’s boundary value problem by using a new integral operator. The solutions obtained in this way require the use of the boundary conditions directly. The obtained results indicate that the new techniques give more suitable and accurate solutions for the Bratu-type problem, compared with those for the ADM and its modification. 展开更多
关键词 Adomian DECOMPOSITION METHOD restarted Adomian METHOD Bratu’s BOUNDARY VALUE Problem
下载PDF
Restarted Adomian Decomposition Method for Solving Volterra’s Population Model
6
作者 Mariam Al-Mazmumy Safa Otyuan Almuhalbedi 《American Journal of Computational Mathematics》 2017年第2期175-182,共8页
In this paper, we used an efficient algorithm to obtain an analytic approximation for Volterra’s model for population growth of a species within a closed system, called the Restarted Adomian decomposition method (RAD... In this paper, we used an efficient algorithm to obtain an analytic approximation for Volterra’s model for population growth of a species within a closed system, called the Restarted Adomian decomposition method (RADM) to solve the model. The numerical results illustrate that RADM has the good accuracy. 展开更多
关键词 Adomian DECOMPOSITION METHOD restarted Adomian METHOD Integro-Differential EQUATIONS Volterra’s POPULATION MODEL
下载PDF
A Subspace Iteration for Calculating a Cluster of Exterior Eigenvalues
7
作者 Achiya Dax 《Advances in Linear Algebra & Matrix Theory》 2015年第3期76-89,共14页
In this paper we present a new subspace iteration for calculating eigenvalues of symmetric matrices. The method is designed to compute a cluster of k exterior eigenvalues. For example, k eigenvalues with the largest a... In this paper we present a new subspace iteration for calculating eigenvalues of symmetric matrices. The method is designed to compute a cluster of k exterior eigenvalues. For example, k eigenvalues with the largest absolute values, the k algebraically largest eigenvalues, or the k algebraically smallest eigenvalues. The new iteration applies a Restarted Krylov method to collect information on the desired cluster. It is shown that the estimated eigenvalues proceed monotonically toward their limits. Another innovation regards the choice of starting points for the Krylov subspaces, which leads to fast rate of convergence. Numerical experiments illustrate the viability of the proposed ideas. 展开更多
关键词 EXTERIOR EIGENVALUES Symmetric Matrices SUBSPACE ITERATIONS INTERLACING restarted Krylov Methods
下载PDF
基于重启动全纯函数嵌入的电力系统经济调度
8
作者 潘世贤 李志刚 +2 位作者 郑杰辉 季天瑶 陈思思 《广东电力》 2022年第10期36-46,共11页
求解电力系统经济调度问题时存在以下不足:传统数学规划类算法依赖于初值,易收敛到局部最优;启发式算法可以跳出局部最优,但牺牲了计算速度和鲁棒性。为了克服这些问题,提出一种用于求解电力系统经济调度的重启动全纯函数嵌入式算法,该... 求解电力系统经济调度问题时存在以下不足:传统数学规划类算法依赖于初值,易收敛到局部最优;启发式算法可以跳出局部最优,但牺牲了计算速度和鲁棒性。为了克服这些问题,提出一种用于求解电力系统经济调度的重启动全纯函数嵌入式算法,该方法引入重启动机制和启发式规则。重启动机制将帕德近似计算限制在低阶,避免计算高阶时的高耗时和停滞解问题;启发式规则能够根据上一过程的近似解筛除部分约束,降低求解Karush-Kuhn-Tucker方程组的规模,并确定合适的初始值。以多个不同规模的静态和动态经济调度问题为算例进行测试,结果表明所提方法能够高效、准确地求解经济调度问题,而且比传统全纯函数嵌入式算法和内点法的收敛速度更快,执行时间更少。 展开更多
关键词 经济调度 全纯函数嵌入 重启动 爬坡约束 Karush-Kuhn-Tucker条件
下载PDF
Iterative algorithm for parabolic and hyperbolic PDEs with nonlocal boundary conditions
9
作者 N.A.Al-Zaid H.O.Bakodah 《Journal of Ocean Engineering and Science》 SCIE 2018年第4期316-324,共9页
In this paper,we are concerned with the numerical solutions for the parabolic and hyperbolic partial differential equations with nonlocal boundary conditions.Thus,we presented a new iterative algorithm based on the Re... In this paper,we are concerned with the numerical solutions for the parabolic and hyperbolic partial differential equations with nonlocal boundary conditions.Thus,we presented a new iterative algorithm based on the Restarted Adomian Decomposition Method(RADM)for solving the two equations of different types involving dissimilar boundary and nonlocal conditions.The algorithm presented transforms the given nonlocal initial boundary value problem to a local Dirichlet one and then employs the RADM for the numerical treatment.Numerical comparisons were made between our proposed method and the Adomian Decomposition Method(ADM)to demonstrate the efficiency and performance of the proposed method. 展开更多
关键词 Adomian Decomposition Method restarted method Parabolic and hyperbolic PDEs Nonlocal boundary conditions.
原文传递
A Preconditioned Implicit Free-Surface Capture Scheme for Large Density Ratio on Tetrahedral Grids
10
作者 Xin Lv Qingping Zou +1 位作者 D.E.Reeve Yong Zhao 《Communications in Computational Physics》 SCIE 2012年第1期215-248,共34页
We present a three dimensional preconditioned implicit free-surface capture scheme on tetrahedral grids.The current scheme improves our recently reported method[10]in several aspects.Specifically,we modified the origi... We present a three dimensional preconditioned implicit free-surface capture scheme on tetrahedral grids.The current scheme improves our recently reported method[10]in several aspects.Specifically,we modified the original eigensystem by applying a preconditioning matrix so that the new eigensystem is virtually independent of density ratio,which is typically large for practical two-phase problems.Further,we replaced the explicit multi-stage Runge-Kutta method by a fully implicit Euler integration scheme for the Navier-Stokes(NS)solver and the Volume of Fluids(VOF)equation is now solved with a second order Crank-Nicolson implicit scheme to reduce the numerical diffusion effect.The preconditioned restarted GeneralizedMinimal RESidual method(GMRES)is then employed to solve the resulting linear system.The validation studies show that with these modifications,the method has improved stability and accuracy when dealing with large density ratio two-phase problems. 展开更多
关键词 VOF level set free surface unstructured finite volume method implicit method restarted GMRES tetrahedral grid
原文传递
Restarted Full Orthogonalization Method with Deflation for Shifted Linear Systems
11
作者 Jun-Feng Yin Guo-Jian Yin 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2014年第3期399-412,共14页
In this paper,we study shifted restated full orthogonalization method with deflation for simultaneously solving a number of shifted systems of linear equations.Theoretical analysis shows that with the deflation techni... In this paper,we study shifted restated full orthogonalization method with deflation for simultaneously solving a number of shifted systems of linear equations.Theoretical analysis shows that with the deflation technique,the new residual of shifted restarted FOM is still collinear with each other.Hence,the new approach can solve the shifted systems simultaneously based on the same Krylov subspace.Numerical experiments show that the deflation technique can significantly improve the convergence performance of shifted restarted FOM. 展开更多
关键词 Shifted linear systems full orthogonalization method restarted Arnoldi process DEFLATION COLLINEAR
原文传递
一种新的大型电力系统低频机电模式计算方法 被引量:48
12
作者 谷寒雨 陈陈 《中国电机工程学报》 EI CSCD 北大核心 2000年第9期40-54,共15页
首次将隐式重启动Arnoldi算法应用于大型电力系统低频机电振荡的特征值计算。证明了对重启动Arnoldi算法、广义Cayley变换与平移 逆变换等价的条件。通过算例和其它重启动Arnoldi算法的详细比较 ,表明隐式重启动Arnoldi算法收敛迅速、... 首次将隐式重启动Arnoldi算法应用于大型电力系统低频机电振荡的特征值计算。证明了对重启动Arnoldi算法、广义Cayley变换与平移 逆变换等价的条件。通过算例和其它重启动Arnoldi算法的详细比较 ,表明隐式重启动Arnoldi算法收敛迅速、计算可靠且性能稳定 ,能有效计算大型电力系统中存在的特征值簇。 展开更多
关键词 大型电力系统 低频机电振荡 计算方法
下载PDF
带先验知识的波阻抗反演正则化方法研究 被引量:21
13
作者 崔岩 王彦飞 杨长春 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2009年第8期2135-2141,共7页
针对波阻抗反演中存在的不适定性问题,本文提出了一种带先验知识的正则化重开始共轭梯度法.该方法的内层循环采用修改的共轭梯度法,并使用重开始技巧;外层循环使用Morozov偏差准则作为停机准则.正则参数的选取采用连续几何选取法.克服... 针对波阻抗反演中存在的不适定性问题,本文提出了一种带先验知识的正则化重开始共轭梯度法.该方法的内层循环采用修改的共轭梯度法,并使用重开始技巧;外层循环使用Morozov偏差准则作为停机准则.正则参数的选取采用连续几何选取法.克服了传统共轭梯度法迭代不足或迭代过度的缺点,将迭代步数控制在了合适的范围,使算法能够更快速更准确的收敛.同时考虑了用最速下降法计算先验解和对解施加非均一的规范约束.通过理论模型试算和实际资料处理,并与共轭梯度法进行对比,表明该算法具有精度高、抗病态能力强,运算速度快的优点,具有实用性. 展开更多
关键词 波阻抗反演 Morozov偏差准则 正则化的重开始共轭梯度法 先验知识
下载PDF
直流调制对电网区间低频振荡的抑制作用 被引量:11
14
作者 沈梁 陈陈 +1 位作者 史慧杰 杨帆 《电力系统及其自动化学报》 CSCD 北大核心 2008年第4期82-86,共5页
随着电网规模的不断扩大,区域间低频振荡已成为危及电网安全稳定运行的主要问题之一。以国内某大型交直流并行电网为算例,采用基于隐式重启动Arnoldi算法IRA(implicitly restarted arnoldi)编制的SSAP软件,结合Prony模式辨识方法,对该... 随着电网规模的不断扩大,区域间低频振荡已成为危及电网安全稳定运行的主要问题之一。以国内某大型交直流并行电网为算例,采用基于隐式重启动Arnoldi算法IRA(implicitly restarted arnoldi)编制的SSAP软件,结合Prony模式辨识方法,对该系统进行小干扰稳定分析,找出存在的弱阻尼区间振荡模式。采用整流侧的直流功率调制和逆变侧的熄弧角调制来阻尼并行交流线路上的区间低频振荡。特征值计算结果表明,通过合理地配置直流附加控制器参数,直流调制可以有效改善系统阻尼,增加系统动态稳定性。 展开更多
关键词 小干扰稳定 直流调制 隐式重启动Arnoldi方法 PRONY辨识
下载PDF
Arnodli算法在电力系统静态电压稳定分析中的应用 被引量:8
15
作者 孙建生 侯志俭 王承民 《电力系统及其自动化学报》 CSCD 北大核心 2005年第5期79-81,98,共4页
为了保证电网的安全稳定运行,在对特征值算法进行介绍的基础上,主要分析了A rnod li算法在电力系统静态电压稳定分析中的应用,并且对显式重启动A rnod li算法的重启动向量进行了改进。使用改进后的算法,可以快速计算降阶雅可比矩阵的模... 为了保证电网的安全稳定运行,在对特征值算法进行介绍的基础上,主要分析了A rnod li算法在电力系统静态电压稳定分析中的应用,并且对显式重启动A rnod li算法的重启动向量进行了改进。使用改进后的算法,可以快速计算降阶雅可比矩阵的模最小特征值和相应的特征向量,从而求出静态电压稳定裕度,以及无功功率补偿装置的安装位置及容量等。实际大系统算例的计算结果表明:改进了重启动向量的A rnod li算法,在应用于大型电力系统静态电压稳定性分析时,具有收敛速度快和数值稳定的特点,并有在线应用的潜力。 展开更多
关键词 大型电力系统 静态电压稳定 特征值分析 重启动算法
下载PDF
用隐式重启动Arnoldi法计算电力系统小干扰稳定 被引量:8
16
作者 张峰 徐光虎 陈陈 《电力系统及其自动化学报》 CSCD 北大核心 2005年第4期59-65,共7页
利用收敛性能更为优越的稀疏特征值分析方法——隐式重启动Arnoldi法(IRA)编制的SSAPV1.0软件,对南方大规模交直流并联运行的电网进行了小干扰稳定分析,找出了存在的弱阻尼模式。根据参与因子在强相关机组加装电力系统稳定器(PSS),同时... 利用收敛性能更为优越的稀疏特征值分析方法——隐式重启动Arnoldi法(IRA)编制的SSAPV1.0软件,对南方大规模交直流并联运行的电网进行了小干扰稳定分析,找出了存在的弱阻尼模式。根据参与因子在强相关机组加装电力系统稳定器(PSS),同时采用直流调制。结果表明,PSS和直流调制能够显著增强系统阻尼,从而有效地抑制了低频振荡。 展开更多
关键词 小干扰稳定 特征值分析 隐式重启动Arnoldi算法 电力系统稳定器 直流调制
下载PDF
基于隐式重启Arnoldi方法的中子扩散本征值问题求解及其降阶研究 被引量:1
17
作者 向钊才 陈洽锋 +1 位作者 赵鹏程 张庆航 《核技术》 EI CAS CSCD 北大核心 2024年第2期135-141,共7页
中子扩散方程高阶谐波可用于重构堆芯中子注量率分布,但传统源迭代与源修正迭代法求解时的收敛速度慢,计算耗时长。采用隐式重启Arnoldi方法(Implicitly Restarted Arnoldi Method,IRAM)求解本征值问题的中子扩散方程获得谐波数据,通过... 中子扩散方程高阶谐波可用于重构堆芯中子注量率分布,但传统源迭代与源修正迭代法求解时的收敛速度慢,计算耗时长。采用隐式重启Arnoldi方法(Implicitly Restarted Arnoldi Method,IRAM)求解本征值问题的中子扩散方程获得谐波数据,通过本征正交分解(Proper Orthogonal Decomposition,POD)与伽辽金(Galerkin)投影相结合的方法构建POD-Galerkin低阶模型,并重构二维稳态TWIGL基准题中子注量率分布。研究结果表明:IRAM方法在求解中子扩散方程的高阶本征值和谐波问题上具有较高的精度;基于POD-Galerkin低阶模型重构中子注量率分布具有较高的保真性与计算效率,有效增值系数与参考解的误差为8.7×10^(-5),对角线上快群和热群中子注量率最大相对误差为2.56%,且低阶模型计算用时仅为全阶模型的10.18%。本研究为堆芯中子注量率重构提供了一种可靠且高效的方法,该方法不仅可用于重构稳态时堆芯中子注量率分布,还具有在瞬态情况下预测中子注量率分布的潜力,有望在未来的应用中进一步拓展。 展开更多
关键词 中子扩散方程 隐式重启Arnoldi方法 本征正交分解 伽辽金投影 中子注量率重构
原文传递
预条件GMRES(m)算法在大型浮体水动力边界元分析中的应用 被引量:5
18
作者 段文洋 刁峰 陈纪康 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2013年第11期1363-1368,共6页
针对大型浮体水动力边界元分析产生的复系数线性方程组结构复杂,直接方法难以求解或者求解费时的问题,提出一种带有预条件技术的重启动型GMRES算法.选取2种不同的预条件处理技术对方程组系数矩阵进行预处理,通过具体算例给出2种预条件... 针对大型浮体水动力边界元分析产生的复系数线性方程组结构复杂,直接方法难以求解或者求解费时的问题,提出一种带有预条件技术的重启动型GMRES算法.选取2种不同的预条件处理技术对方程组系数矩阵进行预处理,通过具体算例给出2种预条件方法的数值比较.数值试验表明,对于大型浮体水动力边界元分析产生的复系数线性方程组,带有不完全LU分解预条件处理技术的GMRES(m)算法求解效率最高,优于直接解法. 展开更多
关键词 大型浮体 边界元分析 重启动GMRES 不完全LU分解预条件
下载PDF
一种动态扩维的IRA算法及其在电力系统关键特征值计算中的应用 被引量:5
19
作者 田鹏飞 刘崇茹 +1 位作者 贠飞龙 洪国巍 《中国电机工程学报》 EI CSCD 北大核心 2015年第17期4318-4325,共8页
文章对带位移逆变换的隐式重启动Arnoldi(implicitly restarted Arnoldi,IRA)算法进行了改进,提出了动态增加Krylov子空间维数求取指定圆内特征值的方法。论文从隐式重启动机理出发,在锁定已收敛特征值的基础上,动态增加特征值个数和子... 文章对带位移逆变换的隐式重启动Arnoldi(implicitly restarted Arnoldi,IRA)算法进行了改进,提出了动态增加Krylov子空间维数求取指定圆内特征值的方法。论文从隐式重启动机理出发,在锁定已收敛特征值的基础上,动态增加特征值个数和子空间维数,扩大搜索圆的半径,实现指定大小的搜索圆内部所有特征值的有效求解。进而将电力系统关键特征值所在区域按一定规则分割,分割得到的所有小区域利用搜索圆覆盖求解。该方法不需人工干预,并行实现后效率更高,且搜索机制规避了漏解的现象。最后,状态空间为570阶和5 272阶的电力系统的关键特征值计算结果表明,所提方法不仅高效,且可靠实用。 展开更多
关键词 隐式重启动Arnoldi算法 关键特征值 动态扩维 搜索圆
下载PDF
求解PageRank问题的重启GMRES修正的多分裂迭代法 被引量:2
20
作者 肖文可 陈星玎 《应用数学和力学》 CSCD 北大核心 2022年第3期330-340,共11页
PageRank算法已经成为网络搜索引擎的核心技术.针对PageRank问题导出的线性方程组,首先将Krylov子空间方法中的重启GMRES(generalized minimal residual)方法与多分裂迭代(multi-splitting iteration,MSI)方法相结合,提出了一种重启GMRE... PageRank算法已经成为网络搜索引擎的核心技术.针对PageRank问题导出的线性方程组,首先将Krylov子空间方法中的重启GMRES(generalized minimal residual)方法与多分裂迭代(multi-splitting iteration,MSI)方法相结合,提出了一种重启GMRES修正的多分裂迭代法;然后,给出了该算法的详细计算流程和收敛性分析;最后,通过数值实验验证了该算法的有效性. 展开更多
关键词 PAGERANK 重启GMRES方法 多分裂迭代法 收敛性
下载PDF
上一页 1 2 37 下一页 到第
使用帮助 返回顶部