This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously a...This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.展开更多
Land use conflicts(LUCs),as a spatial manifestation of the conflicts in the human-land relationships,have a profound impact on regional sustainable development.For China’s metropolitan junction areas(MJAs),the existe...Land use conflicts(LUCs),as a spatial manifestation of the conflicts in the human-land relationships,have a profound impact on regional sustainable development.For China’s metropolitan junction areas(MJAs),the existence of“administrative district economies”has made the issue of LUCs more prominent.Based on a case study of the central Chengdu–Chongqing region,we conducted an exploratory spatial data analysis of the evolutionary process of regional LUCs.Furthermore,structural equation modeling was utilized to analyze the dynamic mechanism of LUCs in MJAs,with a particular emphasis on exploring the influences of administrative boundary.The results showed that from 2010 to 2020,LUCs in the central Chengdu–Chongqing region continued to worsen,and the spatial process conflict and spatial structure conflict indices increased by more than 30.0%.The intensification of LUCs in the central Chengdu–Chongqing region from 2010 to 2020 was mainly the result of the deterioration of conflicts in evaluation units with low conflict levels.LUCs in China’s metropolitan areas generally presented a circular gradient distribution,weakening from the core to the periphery,but there were some strong isolated conflict zones in the outer regions.LUCs in China’s MJAs were the result of interactions among multiple factors,e.g.,natural environment,socio-economic development,policy and institutional processes,and administrative boundary effects.Administrative boundary affected the flow of socio-economic elements,changing the supply-and-demand competition of stakeholders for land resources,consequently exerting an indirect influence on LUCs.This study advances the theory of the dynamic mechanism of LUCs,and provides theoretical support for the governance of these conflicts in transboundary areas.展开更多
文摘This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.
基金funded by the National Natural Science Foundation of China(42101264,42101200)the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation(CPSF)(GZC20233314)+1 种基金the Chongqing Natural Science Foundation,China(cstc2021jcyj-msxmX0811)the Fundamental Research Funds for the Central Universities,China(2023CDSKXYGG006,2024CDJXY014).
文摘Land use conflicts(LUCs),as a spatial manifestation of the conflicts in the human-land relationships,have a profound impact on regional sustainable development.For China’s metropolitan junction areas(MJAs),the existence of“administrative district economies”has made the issue of LUCs more prominent.Based on a case study of the central Chengdu–Chongqing region,we conducted an exploratory spatial data analysis of the evolutionary process of regional LUCs.Furthermore,structural equation modeling was utilized to analyze the dynamic mechanism of LUCs in MJAs,with a particular emphasis on exploring the influences of administrative boundary.The results showed that from 2010 to 2020,LUCs in the central Chengdu–Chongqing region continued to worsen,and the spatial process conflict and spatial structure conflict indices increased by more than 30.0%.The intensification of LUCs in the central Chengdu–Chongqing region from 2010 to 2020 was mainly the result of the deterioration of conflicts in evaluation units with low conflict levels.LUCs in China’s metropolitan areas generally presented a circular gradient distribution,weakening from the core to the periphery,but there were some strong isolated conflict zones in the outer regions.LUCs in China’s MJAs were the result of interactions among multiple factors,e.g.,natural environment,socio-economic development,policy and institutional processes,and administrative boundary effects.Administrative boundary affected the flow of socio-economic elements,changing the supply-and-demand competition of stakeholders for land resources,consequently exerting an indirect influence on LUCs.This study advances the theory of the dynamic mechanism of LUCs,and provides theoretical support for the governance of these conflicts in transboundary areas.