The process of bone remodelling plays an essential role in the emergence and maintenance of bone geometry and its internal structure.Osteoclasts are one of the three main bone cell types that play a crucial role in th...The process of bone remodelling plays an essential role in the emergence and maintenance of bone geometry and its internal structure.Osteoclasts are one of the three main bone cell types that play a crucial role in the bone remodelling cycle.At the microstructural level,osteoclasts create bone deficits by eroding resorption cavities.Understanding how these cavities impair the mechanical quality of the bone is not only relevant in quantifying the impact of resorption cavities in healthy bone and normal aging,but maybe even more so in quantifying their role in metabolic bone diseases.Meta-bolic bone diseases and their treatment are both known to affect the bone remodelling cycle;hence,the bone mechanical competence can and will be affected.How-ever,the current knowledge of the precise dimensions of these cavities and their effect on bone competence is rather limited.This is not surprising considering the difficulties in deriving three-dimensional(3D)properties from two-dimensional(2D)histological sections.The measurement difficulties are reflected in the evalua-tion of how resorption cavities affect bone competence.Although detailed 3D models are generally being used to quantify the mechanical impact of the cavities,the representation of the cavities themselves has basicallybeen limited to simplified shapes and averaged cavityproperties.Qualitatively,these models indicate that cav-ity size and location are important,and that the effectof cavities is larger than can be expected from simplebone loss.In summary,the dimensions of osteoclastresorption cavities were until recently estimated from2D measures;hence,a careful interpretation of resorp-tion cavity dimensions is necessary.More effort needsto go into correctly quantifying resorption cavities usingmodern 3D imaging techniques like micro-computedtomography(micro-CT)and synchrotron radiation CT.Osteoclast resorption cavities affect bone competence.The structure-function relationships have been ana-lysed using computational models that,on one hand,provide rather det展开更多
文摘The process of bone remodelling plays an essential role in the emergence and maintenance of bone geometry and its internal structure.Osteoclasts are one of the three main bone cell types that play a crucial role in the bone remodelling cycle.At the microstructural level,osteoclasts create bone deficits by eroding resorption cavities.Understanding how these cavities impair the mechanical quality of the bone is not only relevant in quantifying the impact of resorption cavities in healthy bone and normal aging,but maybe even more so in quantifying their role in metabolic bone diseases.Meta-bolic bone diseases and their treatment are both known to affect the bone remodelling cycle;hence,the bone mechanical competence can and will be affected.How-ever,the current knowledge of the precise dimensions of these cavities and their effect on bone competence is rather limited.This is not surprising considering the difficulties in deriving three-dimensional(3D)properties from two-dimensional(2D)histological sections.The measurement difficulties are reflected in the evalua-tion of how resorption cavities affect bone competence.Although detailed 3D models are generally being used to quantify the mechanical impact of the cavities,the representation of the cavities themselves has basicallybeen limited to simplified shapes and averaged cavityproperties.Qualitatively,these models indicate that cav-ity size and location are important,and that the effectof cavities is larger than can be expected from simplebone loss.In summary,the dimensions of osteoclastresorption cavities were until recently estimated from2D measures;hence,a careful interpretation of resorp-tion cavity dimensions is necessary.More effort needsto go into correctly quantifying resorption cavities usingmodern 3D imaging techniques like micro-computedtomography(micro-CT)and synchrotron radiation CT.Osteoclast resorption cavities affect bone competence.The structure-function relationships have been ana-lysed using computational models that,on one hand,provide rather det