The relativistic configuration interaction method is employed to calculate the dielectronic recombination(DR) cross sections of helium-like krypton via the 1s2lnl '(n = 2,3,...,15) resonances.Then,the resonant tr...The relativistic configuration interaction method is employed to calculate the dielectronic recombination(DR) cross sections of helium-like krypton via the 1s2lnl '(n = 2,3,...,15) resonances.Then,the resonant transfer excitation(RTE) processes of Kr 34+ colliding with H,He,H 2,and CH x(x = 0-4) targets are investigated under the impulse approximation.The needed Compton profiles of targets are obtained from the Hartree-Fock wave functions.The RTE cross sections are strongly dependent on DR resonant energies and strengths,and the electron momentum distributions of the target.For H 2 and H targets,the ratio of their RTE cross sections changes from 1.85 for the 1s2l2l ' to 1.88 for other resonances,which demonstrates the weak molecular effects on the Compton profiles of H 2.For CH x(x = 0-4) targets,the main contribution to the RTE cross section comes from the carbon atom since carbon carries 6 electrons;as the number of hydrogen increases in CH x,the RTE cross section almost increases by the same value,displaying the strong separate atom character for the hydrogen.However,further comparison of the individual orbital contributions of C(2p,2s,1s) and CH 4(1t 2,2a 1,1a 1) to the RTE cross sections shows that the molecular effects induce differences of about 25.1%,19.9%,and 0.2% between 2p-1t 2,2s-2a 1,and 1s-1a 1 orbitals,respectively.展开更多
The relativistic configuration interaction method is employed to calculate the dielectronic recombination(DR) cross sections of helium-like krypton via the 1s2lnl ’(n = 2,3,...,15) resonances.Then,the resonant transf...The relativistic configuration interaction method is employed to calculate the dielectronic recombination(DR) cross sections of helium-like krypton via the 1s2lnl ’(n = 2,3,...,15) resonances.Then,the resonant transfer excitation(RTE) processes of Kr 34+ colliding with H,He,H 2,and CH x(x = 0-4) targets are investigated under the impulse approximation.The needed Compton profiles of targets are obtained from the Hartree-Fock wave functions.The RTE cross sections are strongly dependent on DR resonant energies and strengths,and the electron momentum distributions of the target.For H 2 and H targets,the ratio of their RTE cross sections changes from 1.85 for the 1s2l2l ’ to 1.88 for other resonances,which demonstrates the weak molecular effects on the Compton profiles of H 2.For CH x(x = 0-4) targets,the main contribution to the RTE cross section comes from the carbon atom since carbon carries 6 electrons;as the number of hydrogen increases in CH x,the RTE cross section almost increases by the same value,displaying the strong separate atom character for the hydrogen.However,further comparison of the individual orbital contributions of C(2p,2s,1s) and CH 4(1t 2,2a 1,1a 1) to the RTE cross sections shows that the molecular effects induce differences of about 25.1%,19.9%,and 0.2% between 2p-1t 2,2s-2a 1,and 1s-1a 1 orbitals,respectively.展开更多
The purpose of this article is to develop an integral derived from the double transfer and excitation theory. The reduced form of this integral, so obtained, can serve in the computation of the transition amplitude wh...The purpose of this article is to develop an integral derived from the double transfer and excitation theory. The reduced form of this integral, so obtained, can serve in the computation of the transition amplitude which is from numerical point of view difficult to implement. This amplitude is of great interest in the resonant and non resonant transfer and excitation (RTE and NTE) processes.展开更多
The phonon-assisted process of energy transfer aiming at exploring the newly emerging frontier between biology and physics is an issue of central interest.This article shows the important role of the intramolecular vi...The phonon-assisted process of energy transfer aiming at exploring the newly emerging frontier between biology and physics is an issue of central interest.This article shows the important role of the intramolecular vibrational modes for excitation energy transfer in the photosynthetic systems.Based on a dimer system consisting of a donor and an acceptor modeled by two two-level systems,in which one of them is coupled to a high-energy vibrational mode,we derive an effective Hamiltonian describing the vibration-assisted coherent energy transfer process in the polaron frame.The effective Hamiltonian reveals in the case that the vibrational mode dynamically matches the energy detuning between the donor and the acceptor,the original detuned energy transfer becomes resonant energy transfer.In addition,the population dynamics and coherence dynamics of the dimer system with and without vibration-assistance are investigated numerically.It is found that,the energy transfer efficiency and the transfer time depend heavily on the interaction strength of the donor and the high-energy vibrational mode,as well as the vibrational frequency.The numerical results also indicate that the initial state and dissipation rate of the vibrational mode have little influence on the dynamics of the dimer system.Results obtained in this article are not only helpful to understand the natural photosynthesis,but also offer an optimal design principle for artificial photosynthesis.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 1179041,11025417,and 10979007) the NSAF (Grant No. 10876043)
文摘The relativistic configuration interaction method is employed to calculate the dielectronic recombination(DR) cross sections of helium-like krypton via the 1s2lnl '(n = 2,3,...,15) resonances.Then,the resonant transfer excitation(RTE) processes of Kr 34+ colliding with H,He,H 2,and CH x(x = 0-4) targets are investigated under the impulse approximation.The needed Compton profiles of targets are obtained from the Hartree-Fock wave functions.The RTE cross sections are strongly dependent on DR resonant energies and strengths,and the electron momentum distributions of the target.For H 2 and H targets,the ratio of their RTE cross sections changes from 1.85 for the 1s2l2l ' to 1.88 for other resonances,which demonstrates the weak molecular effects on the Compton profiles of H 2.For CH x(x = 0-4) targets,the main contribution to the RTE cross section comes from the carbon atom since carbon carries 6 electrons;as the number of hydrogen increases in CH x,the RTE cross section almost increases by the same value,displaying the strong separate atom character for the hydrogen.However,further comparison of the individual orbital contributions of C(2p,2s,1s) and CH 4(1t 2,2a 1,1a 1) to the RTE cross sections shows that the molecular effects induce differences of about 25.1%,19.9%,and 0.2% between 2p-1t 2,2s-2a 1,and 1s-1a 1 orbitals,respectively.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 1179041,11025417,and 10979007)the NSAF (Grant No. 10876043)
文摘The relativistic configuration interaction method is employed to calculate the dielectronic recombination(DR) cross sections of helium-like krypton via the 1s2lnl ’(n = 2,3,...,15) resonances.Then,the resonant transfer excitation(RTE) processes of Kr 34+ colliding with H,He,H 2,and CH x(x = 0-4) targets are investigated under the impulse approximation.The needed Compton profiles of targets are obtained from the Hartree-Fock wave functions.The RTE cross sections are strongly dependent on DR resonant energies and strengths,and the electron momentum distributions of the target.For H 2 and H targets,the ratio of their RTE cross sections changes from 1.85 for the 1s2l2l ’ to 1.88 for other resonances,which demonstrates the weak molecular effects on the Compton profiles of H 2.For CH x(x = 0-4) targets,the main contribution to the RTE cross section comes from the carbon atom since carbon carries 6 electrons;as the number of hydrogen increases in CH x,the RTE cross section almost increases by the same value,displaying the strong separate atom character for the hydrogen.However,further comparison of the individual orbital contributions of C(2p,2s,1s) and CH 4(1t 2,2a 1,1a 1) to the RTE cross sections shows that the molecular effects induce differences of about 25.1%,19.9%,and 0.2% between 2p-1t 2,2s-2a 1,and 1s-1a 1 orbitals,respectively.
基金Supported in part by the M.E.R.S (Ministere de l'Enseignement et de la Recherche Scientifique) under Grant No. D01420060012
文摘The purpose of this article is to develop an integral derived from the double transfer and excitation theory. The reduced form of this integral, so obtained, can serve in the computation of the transition amplitude which is from numerical point of view difficult to implement. This amplitude is of great interest in the resonant and non resonant transfer and excitation (RTE and NTE) processes.
基金Project supported by the National Natural Science Foundation of China(Grant No.11174233)
文摘The phonon-assisted process of energy transfer aiming at exploring the newly emerging frontier between biology and physics is an issue of central interest.This article shows the important role of the intramolecular vibrational modes for excitation energy transfer in the photosynthetic systems.Based on a dimer system consisting of a donor and an acceptor modeled by two two-level systems,in which one of them is coupled to a high-energy vibrational mode,we derive an effective Hamiltonian describing the vibration-assisted coherent energy transfer process in the polaron frame.The effective Hamiltonian reveals in the case that the vibrational mode dynamically matches the energy detuning between the donor and the acceptor,the original detuned energy transfer becomes resonant energy transfer.In addition,the population dynamics and coherence dynamics of the dimer system with and without vibration-assistance are investigated numerically.It is found that,the energy transfer efficiency and the transfer time depend heavily on the interaction strength of the donor and the high-energy vibrational mode,as well as the vibrational frequency.The numerical results also indicate that the initial state and dissipation rate of the vibrational mode have little influence on the dynamics of the dimer system.Results obtained in this article are not only helpful to understand the natural photosynthesis,but also offer an optimal design principle for artificial photosynthesis.