Dempster-Shafer evidence theory(DS theory) is widely used in brain magnetic resonance imaging(MRI) segmentation,due to its efficient combination of the evidence from different sources. In this paper, an improved MRI s...Dempster-Shafer evidence theory(DS theory) is widely used in brain magnetic resonance imaging(MRI) segmentation,due to its efficient combination of the evidence from different sources. In this paper, an improved MRI segmentation method,which is based on fuzzy c-means(FCM) and DS theory, is proposed. Firstly, the average fusion method is used to reduce the uncertainty and the conflict information in the pictures. Then, the neighborhood information and the different influences of spatial location of neighborhood pixels are taken into consideration to handle the spatial information. Finally, the segmentation and the sensor data fusion are achieved by using the DS theory. The simulated images and the MRI images illustrate that our proposed method is more effective in image segmentation.展开更多
The important component of the bio-photonic radiation is the bio-photonic solitons. Due to their existence, the bio-photonic radiation is different from ordinary electromagnetic radiation and has a very clear self-ind...The important component of the bio-photonic radiation is the bio-photonic solitons. Due to their existence, the bio-photonic radiation is different from ordinary electromagnetic radiation and has a very clear self-induced transparency. On the other hand, there are also various bio-solitons in DNA and proteins, which are manifested as various structural solitons such as kinks, or transmission solitons that use kinks as envelope waves and carry exponential and other wave functions. It is in DNA that there are two types of solitons with different properties, namely, wave envelope solitons have the function of transmitting biological binding energy and biological information, and Kink solitons only have the function of expanding or contracting double helix structures or opening and closing double helices. Their mutual cooperation enables the function of DNA to be completed. This paper proposes that the bio-photonic solitons in the bio-photonic radiation resonate with various solitons in the receptor DNA or protein as a whole (or locally), thereby transmitting biological information or genetic information, which is one of the important mechanisms for the bio-photonic radiation to transmit donors or change the genetic traits of receptors. It can be simply referred to as the soliton resonance mechanism. Furthermore, through the research and development of various instruments for collecting or amplifying plant photonic radiation signals, human cells can safely receive plant signals. This can be a process of resonance between plant photonic solitons and various biological solitons in human cells, which can play a role in regulating diseases. These experimental results and applications also provide an excellent interpretation of the soliton resonance mechanism.展开更多
The effect of diversity on dynamics of coupled FitzHugh-Nagumo neurons on complex networks is numerically investigated, where each neuron is subjected to an external subthreshold signal. With the diversity the network...The effect of diversity on dynamics of coupled FitzHugh-Nagumo neurons on complex networks is numerically investigated, where each neuron is subjected to an external subthreshold signal. With the diversity the network is a mixture of excitable and oscillatory neurons, and the diversity is determined by the variance of the system's parameter. The complex network is constructed by randomly adding long-range connections (shortcuts) on a nearest-neighbouring coupled one-dimensional chain. Numerical results show that external signals are maximally magnified at an intermediate value of the diversity, as in the case of well-known stochastic resonance, burthermore, the effects of the number of shortcuts and coupled strength on the diversity-induced phenomena are also discussed. These findings exhibit that the diversity may play a constructive role in response to external signal, and highlight the importance of the diversity on such complex networks.展开更多
Since 2005, there has been a huge growth in the use of engineered control pulses to perform desired quantum operations in systems such as nuclear magnetic resonance quantum information processors. These approaches, wh...Since 2005, there has been a huge growth in the use of engineered control pulses to perform desired quantum operations in systems such as nuclear magnetic resonance quantum information processors. These approaches, which build on the original gradient ascent pulse engineering algorithm, remain computationally intensive because of the need to calculate matrix exponentials for each time step in the control pulse. In this study, we discuss how the propagators for each time step can be approximated using the Trotter-Suzuki formula, and a further speedup achieved by avoiding unnecessary operations. The resulting procedure can provide substantial speed gain with negligible costs in the propagator error, providing a more practical approach to pulse en-ineerinK.展开更多
To discuss further the dependence of stochastic resonance on signals, nonlinear systems and noise, especially on noise, the binary input signal buried in Gaussian mixture noise through a nonlinear threshold array is s...To discuss further the dependence of stochastic resonance on signals, nonlinear systems and noise, especially on noise, the binary input signal buried in Gaussian mixture noise through a nonlinear threshold array is studied based on mutual information. It is obtained that Gaussian mixture noise can improve the information transmission through the array. Both stochastic resonance (SR) and suprathreshold stochastic resonance (SSR) can be observed in the single threshold system and in the threshold array. The parameters in noise distribution affect the occurrence of SR and SSR. The efficacy of information transmission can be significantly enhanced as the number of threshold devices in the array increases. These results show further the dependence of SR and SSR on the noise distribution, and also extend the applicability of SR and SSR in information transmission.展开更多
Spiking neurons usually change their membrane properties, especially ion channel activity, during adaptation or synaptic modification to improve information processing and transmission. Using simple and biophysically ...Spiking neurons usually change their membrane properties, especially ion channel activity, during adaptation or synaptic modification to improve information processing and transmission. Using simple and biophysically realistic models, our analyses reveal that activity-dependent regulation of membrane properties contributes to sensitivity adaptation that improves the neuron ability of detecting sub-threshold signals in the presence of background noises. The improvement is achieved by regulating the conductance of ion channels on the membrane, dependent on the neuron firing activity.展开更多
It is important to look at the behaviour of a living system from the point of view of the biophysical paradigm. In fact, the chemical reactions, which allow us to understand how metabolic processes take place, are sho...It is important to look at the behaviour of a living system from the point of view of the biophysical paradigm. In fact, the chemical reactions, which allow us to understand how metabolic processes take place, are short-range and they are activated at a distance of one atomic or molecular diameter. 100,000 reactions/sec. take place in a cell, perfectly balanced in space and time, i.e. these happen at the right time and in the right place. So, it is chemically inexplicable how this can be possible, because it is absolutely necessary that molecules recognize each other at distances greater than a molecular diameter. The biophysical paradigm, through coherent resonance mechanisms, tries to explain how molecules can recognize each other “from afar”. It is a matter of beginning to understand that, probably, the same atoms and molecules are endowed with a kind of “intrinsic intelligence” that guides them in their interactions, and the key to understanding can only be of physical type. We can also hypothesize that a cellular information mechanism based on endogenous electromagnetic fields exists. In this way, DNA could play a role of in-out antenna, due to its double helix shape (resonant LC circuit). This paper speaks about these unexpected, but not too many, connections between Physics and Biology.展开更多
We consider a Dirichlet nonlinear equation driven by the(p,2)-Laplacian and with a reaction having the competing effects of a parametric asymmetric superlinear term and a resonant perturbation.We show that for all sma...We consider a Dirichlet nonlinear equation driven by the(p,2)-Laplacian and with a reaction having the competing effects of a parametric asymmetric superlinear term and a resonant perturbation.We show that for all small values of the parameter the problem has at least five nontrivial smooth solutions all with sign information.展开更多
基金supported by the National Natural Science Foundation of China(6167138461703338)+2 种基金the Natural Science Basic Research Plan in Shaanxi Province of China(2016JM6018)the Project of Science and Technology Foundationthe Fundamental Research Funds for the Central Universities(3102017OQD020)
文摘Dempster-Shafer evidence theory(DS theory) is widely used in brain magnetic resonance imaging(MRI) segmentation,due to its efficient combination of the evidence from different sources. In this paper, an improved MRI segmentation method,which is based on fuzzy c-means(FCM) and DS theory, is proposed. Firstly, the average fusion method is used to reduce the uncertainty and the conflict information in the pictures. Then, the neighborhood information and the different influences of spatial location of neighborhood pixels are taken into consideration to handle the spatial information. Finally, the segmentation and the sensor data fusion are achieved by using the DS theory. The simulated images and the MRI images illustrate that our proposed method is more effective in image segmentation.
文摘The important component of the bio-photonic radiation is the bio-photonic solitons. Due to their existence, the bio-photonic radiation is different from ordinary electromagnetic radiation and has a very clear self-induced transparency. On the other hand, there are also various bio-solitons in DNA and proteins, which are manifested as various structural solitons such as kinks, or transmission solitons that use kinks as envelope waves and carry exponential and other wave functions. It is in DNA that there are two types of solitons with different properties, namely, wave envelope solitons have the function of transmitting biological binding energy and biological information, and Kink solitons only have the function of expanding or contracting double helix structures or opening and closing double helices. Their mutual cooperation enables the function of DNA to be completed. This paper proposes that the bio-photonic solitons in the bio-photonic radiation resonate with various solitons in the receptor DNA or protein as a whole (or locally), thereby transmitting biological information or genetic information, which is one of the important mechanisms for the bio-photonic radiation to transmit donors or change the genetic traits of receptors. It can be simply referred to as the soliton resonance mechanism. Furthermore, through the research and development of various instruments for collecting or amplifying plant photonic radiation signals, human cells can safely receive plant signals. This can be a process of resonance between plant photonic solitons and various biological solitons in human cells, which can play a role in regulating diseases. These experimental results and applications also provide an excellent interpretation of the soliton resonance mechanism.
文摘The effect of diversity on dynamics of coupled FitzHugh-Nagumo neurons on complex networks is numerically investigated, where each neuron is subjected to an external subthreshold signal. With the diversity the network is a mixture of excitable and oscillatory neurons, and the diversity is determined by the variance of the system's parameter. The complex network is constructed by randomly adding long-range connections (shortcuts) on a nearest-neighbouring coupled one-dimensional chain. Numerical results show that external signals are maximally magnified at an intermediate value of the diversity, as in the case of well-known stochastic resonance, burthermore, the effects of the number of shortcuts and coupled strength on the diversity-induced phenomena are also discussed. These findings exhibit that the diversity may play a constructive role in response to external signal, and highlight the importance of the diversity on such complex networks.
文摘Since 2005, there has been a huge growth in the use of engineered control pulses to perform desired quantum operations in systems such as nuclear magnetic resonance quantum information processors. These approaches, which build on the original gradient ascent pulse engineering algorithm, remain computationally intensive because of the need to calculate matrix exponentials for each time step in the control pulse. In this study, we discuss how the propagators for each time step can be approximated using the Trotter-Suzuki formula, and a further speedup achieved by avoiding unnecessary operations. The resulting procedure can provide substantial speed gain with negligible costs in the propagator error, providing a more practical approach to pulse en-ineerinK.
文摘To discuss further the dependence of stochastic resonance on signals, nonlinear systems and noise, especially on noise, the binary input signal buried in Gaussian mixture noise through a nonlinear threshold array is studied based on mutual information. It is obtained that Gaussian mixture noise can improve the information transmission through the array. Both stochastic resonance (SR) and suprathreshold stochastic resonance (SSR) can be observed in the single threshold system and in the threshold array. The parameters in noise distribution affect the occurrence of SR and SSR. The efficacy of information transmission can be significantly enhanced as the number of threshold devices in the array increases. These results show further the dependence of SR and SSR on the noise distribution, and also extend the applicability of SR and SSR in information transmission.
基金Supported by the National Basic Research Programme of China under Grant No 2005CB724301, the National Natural Science Foundation of China under Grant No 60375039, and the Ministry of Education of China under Grant No 20040248062. The authors thank Mr Huang Shi-Yong for helpful discussion.
文摘Spiking neurons usually change their membrane properties, especially ion channel activity, during adaptation or synaptic modification to improve information processing and transmission. Using simple and biophysically realistic models, our analyses reveal that activity-dependent regulation of membrane properties contributes to sensitivity adaptation that improves the neuron ability of detecting sub-threshold signals in the presence of background noises. The improvement is achieved by regulating the conductance of ion channels on the membrane, dependent on the neuron firing activity.
文摘It is important to look at the behaviour of a living system from the point of view of the biophysical paradigm. In fact, the chemical reactions, which allow us to understand how metabolic processes take place, are short-range and they are activated at a distance of one atomic or molecular diameter. 100,000 reactions/sec. take place in a cell, perfectly balanced in space and time, i.e. these happen at the right time and in the right place. So, it is chemically inexplicable how this can be possible, because it is absolutely necessary that molecules recognize each other at distances greater than a molecular diameter. The biophysical paradigm, through coherent resonance mechanisms, tries to explain how molecules can recognize each other “from afar”. It is a matter of beginning to understand that, probably, the same atoms and molecules are endowed with a kind of “intrinsic intelligence” that guides them in their interactions, and the key to understanding can only be of physical type. We can also hypothesize that a cellular information mechanism based on endogenous electromagnetic fields exists. In this way, DNA could play a role of in-out antenna, due to its double helix shape (resonant LC circuit). This paper speaks about these unexpected, but not too many, connections between Physics and Biology.
基金NNSF of China(Grant No.12071413)NSF of Guangxi(Grant No.2023GXNSFAA026085)the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement No.823731 CONMECH。
文摘We consider a Dirichlet nonlinear equation driven by the(p,2)-Laplacian and with a reaction having the competing effects of a parametric asymmetric superlinear term and a resonant perturbation.We show that for all small values of the parameter the problem has at least five nontrivial smooth solutions all with sign information.