针对无线电信号的攻击愈来愈频繁的情况,本文在数据流形理论基础上,使用深度神经网络(DNN)检测无线电信号对抗样本及其攻击方法。首先使用5种不同攻击方法对无线电信号进行攻击产生对抗样本,其次使用3种不同的神经网络检测对抗样本,最...针对无线电信号的攻击愈来愈频繁的情况,本文在数据流形理论基础上,使用深度神经网络(DNN)检测无线电信号对抗样本及其攻击方法。首先使用5种不同攻击方法对无线电信号进行攻击产生对抗样本,其次使用3种不同的神经网络检测对抗样本,最后用残差神经网络(ResNet)检测对抗样本的攻击方法。在信噪比(SNR)为30 d B和20 dB的无线电信号数据上的实验结果表明,本文所使用的残差神经网络检测精度接近100%,在信噪比为10 dB的无线电信号数据上的检测精度仍然在90%以上。结果表明本文所用的残差神经网络能有效检测无线电信号的对抗样本及其攻击方法。展开更多
针对传统多相码信号识别方法在低信噪比情况下分类精度不高、类识别率不均衡和识别方法不具有通用性的特点,提出了一种利用集成学习中的多类指数损失函数逐步添加模型(stagewise additive modeling using a multi-class exponential los...针对传统多相码信号识别方法在低信噪比情况下分类精度不高、类识别率不均衡和识别方法不具有通用性的特点,提出了一种利用集成学习中的多类指数损失函数逐步添加模型(stagewise additive modeling using a multi-class exponential loss function,SAMME)算法和残差神经网络(residual neural network,ResNet)的多相码信号识别方法。通过仿真实验对5类多相码信号进行了分类识别,验证了模型的有效性,分析了不同数量基学习器对模型的影响,最后与传统分类方法进行了对比。仿真结果表明,在信噪比低于6 dB的情况下,所提方法相对于单个残差网络提高了约10%的分类精度,同时缩小了类之间识别率的差距,相对于常用的分类方法也有很大的优势。展开更多
文摘针对无线电信号的攻击愈来愈频繁的情况,本文在数据流形理论基础上,使用深度神经网络(DNN)检测无线电信号对抗样本及其攻击方法。首先使用5种不同攻击方法对无线电信号进行攻击产生对抗样本,其次使用3种不同的神经网络检测对抗样本,最后用残差神经网络(ResNet)检测对抗样本的攻击方法。在信噪比(SNR)为30 d B和20 dB的无线电信号数据上的实验结果表明,本文所使用的残差神经网络检测精度接近100%,在信噪比为10 dB的无线电信号数据上的检测精度仍然在90%以上。结果表明本文所用的残差神经网络能有效检测无线电信号的对抗样本及其攻击方法。
文摘针对传统多相码信号识别方法在低信噪比情况下分类精度不高、类识别率不均衡和识别方法不具有通用性的特点,提出了一种利用集成学习中的多类指数损失函数逐步添加模型(stagewise additive modeling using a multi-class exponential loss function,SAMME)算法和残差神经网络(residual neural network,ResNet)的多相码信号识别方法。通过仿真实验对5类多相码信号进行了分类识别,验证了模型的有效性,分析了不同数量基学习器对模型的影响,最后与传统分类方法进行了对比。仿真结果表明,在信噪比低于6 dB的情况下,所提方法相对于单个残差网络提高了约10%的分类精度,同时缩小了类之间识别率的差距,相对于常用的分类方法也有很大的优势。