针对模型VDSR(very deep super resolution)中存在的忽略特征通道间的相互联系,不能充分利用各层特征,以及参数量过大,计算复杂度过高等问题,本文提出了一种基于残差通道注意力和多级特征融合的图像超分辨率重建网络结构,通过引入残差...针对模型VDSR(very deep super resolution)中存在的忽略特征通道间的相互联系,不能充分利用各层特征,以及参数量过大,计算复杂度过高等问题,本文提出了一种基于残差通道注意力和多级特征融合的图像超分辨率重建网络结构,通过引入残差通道注意力,自适应校正信道的特征响应,提高了网络的表征能力。网络整体使用递归结构,在每个递归块内实现参数共享,减少了参数数量;多级特征融合的方式可以充分提取图像特征;用分组卷积代替传统卷积,进一步减少了参数数量,并降低了计算复杂度。所提算法在保证图像重建质量的同时,减少了模型的参数量并降低了计算复杂度,在图片放大4倍时,参数量和计算复杂度分别约为VDSR的0.33和0.02。展开更多
为实现绝缘子及其缺陷实时检测,文章以改进的区域卷积神经网络(Faster Region Convolutional Neural Networks,Faster R-CNN)作为基础研究算法,将残差网络和特征金字塔网络相融合作为特征提取网络,使用深度可分离卷积替换原有的普通卷积...为实现绝缘子及其缺陷实时检测,文章以改进的区域卷积神经网络(Faster Region Convolutional Neural Networks,Faster R-CNN)作为基础研究算法,将残差网络和特征金字塔网络相融合作为特征提取网络,使用深度可分离卷积替换原有的普通卷积,引入SE通道注意力模块,同时改进了网络中的激活函数。改进后的Faster R-CNN与普通Faster R-CNN相比,全类别平均正确率(mean Average Precision,mAP)和检测速度都有所提高。展开更多
文摘针对模型VDSR(very deep super resolution)中存在的忽略特征通道间的相互联系,不能充分利用各层特征,以及参数量过大,计算复杂度过高等问题,本文提出了一种基于残差通道注意力和多级特征融合的图像超分辨率重建网络结构,通过引入残差通道注意力,自适应校正信道的特征响应,提高了网络的表征能力。网络整体使用递归结构,在每个递归块内实现参数共享,减少了参数数量;多级特征融合的方式可以充分提取图像特征;用分组卷积代替传统卷积,进一步减少了参数数量,并降低了计算复杂度。所提算法在保证图像重建质量的同时,减少了模型的参数量并降低了计算复杂度,在图片放大4倍时,参数量和计算复杂度分别约为VDSR的0.33和0.02。
文摘为实现绝缘子及其缺陷实时检测,文章以改进的区域卷积神经网络(Faster Region Convolutional Neural Networks,Faster R-CNN)作为基础研究算法,将残差网络和特征金字塔网络相融合作为特征提取网络,使用深度可分离卷积替换原有的普通卷积,引入SE通道注意力模块,同时改进了网络中的激活函数。改进后的Faster R-CNN与普通Faster R-CNN相比,全类别平均正确率(mean Average Precision,mAP)和检测速度都有所提高。