A framework of risk based inspection and repair planning was presented to optimize for the ship structures subjected to corrosion deterioration. The planning problem was formulated as an optimization problem where th...A framework of risk based inspection and repair planning was presented to optimize for the ship structures subjected to corrosion deterioration. The planning problem was formulated as an optimization problem where the expected lifetime costs were minimized with a constraint on the minimum acceptable reliability index. The safety margins were established for the inspection events, the repair events and the failure events for ship structures. Moreover, the formulae were derived to calculate failure probabilities and repair probabilities. Based on them, a component subjected to corrosion is investigated for illustration of the process of selecting the optimal inspection and repair strategy. Furthermore, some sensitivity studies were provided. The results show that the optimal inspection instants should take place before the reliability index reaches the minimum acceptable reliability index. The optimal target failure probability is 10 -3 . In addition, a balance can be achieved between the risk cost and total expected inspection and repair costs by means of the risk-based optimal inspection and repair method, which is very effective in selecting the optimal inspection and repair strategy.展开更多
具有单连续变量的背包问题(Knapsack Problem with a single Continuous variable,KPC)是标准0-1背包问题的一个新颖扩展形式,它既是一个NP完全问题,又是一个带有连续变量S的新颖组合优化问题,求解难度非常大.为了快速高效地求解KPC问题...具有单连续变量的背包问题(Knapsack Problem with a single Continuous variable,KPC)是标准0-1背包问题的一个新颖扩展形式,它既是一个NP完全问题,又是一个带有连续变量S的新颖组合优化问题,求解难度非常大.为了快速高效地求解KPC问题,该文提出了利用演化算法求解KPC的新思路,并给出了基于离散差分演化算法求解KPC的两个有效方法.首先,介绍了基本差分演化算法和具有混合编码的二进制差分演化算法(HBDE)的原理,给出了HBDE的算法伪代码描述,并分析了KPC的基本数学模型KPCM1的计算复杂度.然后,在基于降维法消除KPCM1中连续变量S的基础上,建立了KPC的一个新离散数学模型KPCM2;随后在基于贪心策略提出处理不可行解的有效算法基础上,基于单种群HBDE给出了求解KPC的第一个离散演化算法S-HBDE.第三,通过把连续变量S的取值范围划分为两个子区间将KPC分解为两个子问题,并基于降维法建立了KPC的适于并行求解的第二个数学模型KPCM3;在利用贪心策略给出处理子问题不可行解的两个有效算法基础上,基于双种群HBDE提出了求解KPC的第二个离散演化算法B-HBDE.最后,在给出四类大规模KPC实例的基础上,利用S-HBDE和B-HBDE分别求解这些实例,并与近似算法AP-KPC、遗传算法和离散粒子群优化算法的计算结果、耗费时间和稳定性等指标进行比较,比较结果表明S-HBDE和B-HBDE不仅在求解精度和稳定性方面均优于其它3个算法,而且求解速度很快,非常适于在实际应用中快速高效地求解大规模KPC实例.展开更多
为利用灰狼优化算法求解有界背包问题,基于编码转换法提出一种离散灰狼优化算法(discrete grey wolf optimizer,DGWO)。引入遗传算法的交叉策略增强局部搜索能力,使用基于贪心策略的修复与优化法处理不可行解,保证算法的求解效果,加快...为利用灰狼优化算法求解有界背包问题,基于编码转换法提出一种离散灰狼优化算法(discrete grey wolf optimizer,DGWO)。引入遗传算法的交叉策略增强局部搜索能力,使用基于贪心策略的修复与优化法处理不可行解,保证算法的求解效果,加快算法的收敛速度。对于3类大规模有界背包问题实例,通过与已有算法的计算结果比较与分析,验证了DGWO的有效性和稳定性。实验结果表明,DGWO的收敛速度比其它算法快,对于所有的有界背包问题实例均能获得一个近似比接近1的近似解。展开更多
群智能启发式算法求解折扣{0-1}背包问题(D{0-1}KP)时,为提升求解效率和求解质量,需采用某种修复与优化策略将非正常编码个体转换为符合解约束条件的编码个体。在引入项集价值密度概念基础上,以粒子群算法(PSO)为例,提出一组基于项集的...群智能启发式算法求解折扣{0-1}背包问题(D{0-1}KP)时,为提升求解效率和求解质量,需采用某种修复与优化策略将非正常编码个体转换为符合解约束条件的编码个体。在引入项集价值密度概念基础上,以粒子群算法(PSO)为例,提出一组基于项集的贪婪修复与优化方法(group greedy repair and optimization algorithm,GGROA),并进一步构造PSO-GGRDKP算法(PSO based GGROA for solving D{0-1}KP)以探究GGROA方法的可行性和性能。PSO-NGROADKP(PSO based NGROA for solving D{0-1}KP)和PSO-GRDKP(PSO based GROA for solving D{0-1}KP)是基于项贪心修复与优化方法的粒子群算法。在D{0-1}KP标准数据集的实验结果表明:与PSO-NGROADKP和PSO-GRDKP相比,PSO-GGRDKP算法的解误差率略高,但算法时间性能分别提升了13.8%、12.9%。展开更多
文摘A framework of risk based inspection and repair planning was presented to optimize for the ship structures subjected to corrosion deterioration. The planning problem was formulated as an optimization problem where the expected lifetime costs were minimized with a constraint on the minimum acceptable reliability index. The safety margins were established for the inspection events, the repair events and the failure events for ship structures. Moreover, the formulae were derived to calculate failure probabilities and repair probabilities. Based on them, a component subjected to corrosion is investigated for illustration of the process of selecting the optimal inspection and repair strategy. Furthermore, some sensitivity studies were provided. The results show that the optimal inspection instants should take place before the reliability index reaches the minimum acceptable reliability index. The optimal target failure probability is 10 -3 . In addition, a balance can be achieved between the risk cost and total expected inspection and repair costs by means of the risk-based optimal inspection and repair method, which is very effective in selecting the optimal inspection and repair strategy.
文摘具有单连续变量的背包问题(Knapsack Problem with a single Continuous variable,KPC)是标准0-1背包问题的一个新颖扩展形式,它既是一个NP完全问题,又是一个带有连续变量S的新颖组合优化问题,求解难度非常大.为了快速高效地求解KPC问题,该文提出了利用演化算法求解KPC的新思路,并给出了基于离散差分演化算法求解KPC的两个有效方法.首先,介绍了基本差分演化算法和具有混合编码的二进制差分演化算法(HBDE)的原理,给出了HBDE的算法伪代码描述,并分析了KPC的基本数学模型KPCM1的计算复杂度.然后,在基于降维法消除KPCM1中连续变量S的基础上,建立了KPC的一个新离散数学模型KPCM2;随后在基于贪心策略提出处理不可行解的有效算法基础上,基于单种群HBDE给出了求解KPC的第一个离散演化算法S-HBDE.第三,通过把连续变量S的取值范围划分为两个子区间将KPC分解为两个子问题,并基于降维法建立了KPC的适于并行求解的第二个数学模型KPCM3;在利用贪心策略给出处理子问题不可行解的两个有效算法基础上,基于双种群HBDE提出了求解KPC的第二个离散演化算法B-HBDE.最后,在给出四类大规模KPC实例的基础上,利用S-HBDE和B-HBDE分别求解这些实例,并与近似算法AP-KPC、遗传算法和离散粒子群优化算法的计算结果、耗费时间和稳定性等指标进行比较,比较结果表明S-HBDE和B-HBDE不仅在求解精度和稳定性方面均优于其它3个算法,而且求解速度很快,非常适于在实际应用中快速高效地求解大规模KPC实例.
文摘为利用灰狼优化算法求解有界背包问题,基于编码转换法提出一种离散灰狼优化算法(discrete grey wolf optimizer,DGWO)。引入遗传算法的交叉策略增强局部搜索能力,使用基于贪心策略的修复与优化法处理不可行解,保证算法的求解效果,加快算法的收敛速度。对于3类大规模有界背包问题实例,通过与已有算法的计算结果比较与分析,验证了DGWO的有效性和稳定性。实验结果表明,DGWO的收敛速度比其它算法快,对于所有的有界背包问题实例均能获得一个近似比接近1的近似解。
文摘群智能启发式算法求解折扣{0-1}背包问题(D{0-1}KP)时,为提升求解效率和求解质量,需采用某种修复与优化策略将非正常编码个体转换为符合解约束条件的编码个体。在引入项集价值密度概念基础上,以粒子群算法(PSO)为例,提出一组基于项集的贪婪修复与优化方法(group greedy repair and optimization algorithm,GGROA),并进一步构造PSO-GGRDKP算法(PSO based GGROA for solving D{0-1}KP)以探究GGROA方法的可行性和性能。PSO-NGROADKP(PSO based NGROA for solving D{0-1}KP)和PSO-GRDKP(PSO based GROA for solving D{0-1}KP)是基于项贪心修复与优化方法的粒子群算法。在D{0-1}KP标准数据集的实验结果表明:与PSO-NGROADKP和PSO-GRDKP相比,PSO-GGRDKP算法的解误差率略高,但算法时间性能分别提升了13.8%、12.9%。