期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
结合改进RepVGG-A0网络和重新标签的人脸表情识别研究 被引量:1
1
作者 李婉婷 罗晓曙 +1 位作者 蒙志明 陈吉 《现代电子技术》 2022年第20期69-74,共6页
目前大规模人脸表情识别的主要问题在于不确定性,这些不确定性来源于模棱两可的面部表情、低质量的脸部图像和标注者的主观性。为此,文中提出一种基于RepVGG-A0改进后的网络模型。该模型引入有效通道注意力机制,即在卷积层和ReLU激活函... 目前大规模人脸表情识别的主要问题在于不确定性,这些不确定性来源于模棱两可的面部表情、低质量的脸部图像和标注者的主观性。为此,文中提出一种基于RepVGG-A0改进后的网络模型。该模型引入有效通道注意力机制,即在卷积层和ReLU激活函数之间插入ECA通道注意力模块,在特征提取后引入加权模块来预计样本的权重,对于不确定的样本给予的权重较小,并采用重新标签的方法对低权重的人脸表情图片重新给予伪标签,目的是使修改过的样本在下一次训练中获得高权重,从而提高人脸表情识别率。最后,在RAF-DB和FER-2013数据集上进行实验验证。结果表明,文中改进模型的人脸表情识别率分别达到88.90%和75.61%,说明该方法对人脸表情识别具有有效性。 展开更多
关键词 人脸表情识别 repvgg-A0 重新标签 网络模型 特征提取 数据预处理 ReLU
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部