Background Obstructive sleep apnea (OSA) is the most common cause of resistant hypertension, which has been proposed to result from activation of the renin-angiotensin-aldosterone system (RAAS). We meta-analyzed t...Background Obstructive sleep apnea (OSA) is the most common cause of resistant hypertension, which has been proposed to result from activation of the renin-angiotensin-aldosterone system (RAAS). We meta-analyzed the effects of OSA on plasma levels of RAAS components. Methods Full-text studies published on MEDL1NE and EMBASE analyzing fasting plasma levels of at least one RAAS component in adults with OSA with or without hypertension. OSA was diagnosed as an apnea-hypopnea index or respiratory disturbance index 〉 5. Study quality was evaluated using the Newcastle-Ottawa Scale, and heterogeneity was assessed using the 12 statistic. Results from individual studies were synthesized using inverse variance and pooled using a random-effects model. Subgroup analysis, sensitivity analysis, and meta-regression were performed, and risk of publication bias was assessed. Results The meta-analysis included 13 studies, of which 10 reported results on renin (n = 470 cases and controls), 7 on angiotensin II (AnglI, n = 384), and 9 on aldosterone (n = 439). AnglI levels were significantly higher in OSA than in controls [mean differences = 3.39 ng/L, 95% CI: 2.00-4.79, P 〈 0.00001], while aldosterone levels were significantly higher in OSA with hypertension than OSA but not with hypertension (mean differences = 1.32 ng/dL, 95% CI: 0.58-2.07, P = 0.0005). Meta-analysis of all studies suggested no significant differences in aldosterone between OSA and controls, but a significant pooled mean difference of 1.35 ng/mL (95% CI: 0.88-1.82, P 〈 0.00001) emerged after excluding one small-sample study. No significant risk of publication bias was detected among all included studies. Conelusions OSA is associated with higher AnglI and aldosterone levels, espe- cially in hypertensive patients. OSA may cause hypertension, at least in part, by stimulating RAAS activity.展开更多
Background Genetic variability in the renin-angiotensin-aldosterone system may modify renal responses to injury and disease progression. The angiotensin I-converting enzyme (ACE) gene insertion/deletion (I/D), the...Background Genetic variability in the renin-angiotensin-aldosterone system may modify renal responses to injury and disease progression. The angiotensin I-converting enzyme (ACE) gene insertion/deletion (I/D), the angiotensinogen (AGT) gene, M235T, the aldosterone synthase (CYP11B2) gene, C-344T, and the angiotensin II type 1 receptor (AT1R) gene, Al166C, have been shown to be associated with IgA nephropathy (IgAN) and its progression. We determined the presence of these polymorphisms in 130 Chinese patients with IgAN, including 47 patients with end-stage renal disease (ESRD) and 120 healthy Chinese subjects, to assess their impact on the susceptibility to disease and the liability of progression to ESRD. Methods Genotyping was performed with DNA isolated from peripheral leucocytes using polymerase chain reaction amplification of the polymorphic sequence, restriction enzyme digestion, and separation and identification of DNA fragments. Clinical data from renal biopsies were collected. Results ACE, AGT, CYP and AT1R genotype distributions were similar in patients with IgAN and in controls. Comparing patients with ESRD (IgAN-ESRD) and those without ESRD (IgAN-non ESRD), there was a significant increase only in the ACE DD genotype (P 〈0.05) among the four gene polymorphisms. There was significant dominance of the male (P 〈0.05), more marked hypertension (P 〈0.01), proteinuria (P 〈0.01) and increased serum creatinine during renal biopsy (P〈0.01) in the IgAN-ESRD group. Conclusion Among the ACE, AGT, ATIR and CYP gene polymorphisms, only the DD genotype may predispose the individual to increased risk of progression to ESRD in the Chinese population.展开更多
文摘Background Obstructive sleep apnea (OSA) is the most common cause of resistant hypertension, which has been proposed to result from activation of the renin-angiotensin-aldosterone system (RAAS). We meta-analyzed the effects of OSA on plasma levels of RAAS components. Methods Full-text studies published on MEDL1NE and EMBASE analyzing fasting plasma levels of at least one RAAS component in adults with OSA with or without hypertension. OSA was diagnosed as an apnea-hypopnea index or respiratory disturbance index 〉 5. Study quality was evaluated using the Newcastle-Ottawa Scale, and heterogeneity was assessed using the 12 statistic. Results from individual studies were synthesized using inverse variance and pooled using a random-effects model. Subgroup analysis, sensitivity analysis, and meta-regression were performed, and risk of publication bias was assessed. Results The meta-analysis included 13 studies, of which 10 reported results on renin (n = 470 cases and controls), 7 on angiotensin II (AnglI, n = 384), and 9 on aldosterone (n = 439). AnglI levels were significantly higher in OSA than in controls [mean differences = 3.39 ng/L, 95% CI: 2.00-4.79, P 〈 0.00001], while aldosterone levels were significantly higher in OSA with hypertension than OSA but not with hypertension (mean differences = 1.32 ng/dL, 95% CI: 0.58-2.07, P = 0.0005). Meta-analysis of all studies suggested no significant differences in aldosterone between OSA and controls, but a significant pooled mean difference of 1.35 ng/mL (95% CI: 0.88-1.82, P 〈 0.00001) emerged after excluding one small-sample study. No significant risk of publication bias was detected among all included studies. Conelusions OSA is associated with higher AnglI and aldosterone levels, espe- cially in hypertensive patients. OSA may cause hypertension, at least in part, by stimulating RAAS activity.
文摘Background Genetic variability in the renin-angiotensin-aldosterone system may modify renal responses to injury and disease progression. The angiotensin I-converting enzyme (ACE) gene insertion/deletion (I/D), the angiotensinogen (AGT) gene, M235T, the aldosterone synthase (CYP11B2) gene, C-344T, and the angiotensin II type 1 receptor (AT1R) gene, Al166C, have been shown to be associated with IgA nephropathy (IgAN) and its progression. We determined the presence of these polymorphisms in 130 Chinese patients with IgAN, including 47 patients with end-stage renal disease (ESRD) and 120 healthy Chinese subjects, to assess their impact on the susceptibility to disease and the liability of progression to ESRD. Methods Genotyping was performed with DNA isolated from peripheral leucocytes using polymerase chain reaction amplification of the polymorphic sequence, restriction enzyme digestion, and separation and identification of DNA fragments. Clinical data from renal biopsies were collected. Results ACE, AGT, CYP and AT1R genotype distributions were similar in patients with IgAN and in controls. Comparing patients with ESRD (IgAN-ESRD) and those without ESRD (IgAN-non ESRD), there was a significant increase only in the ACE DD genotype (P 〈0.05) among the four gene polymorphisms. There was significant dominance of the male (P 〈0.05), more marked hypertension (P 〈0.01), proteinuria (P 〈0.01) and increased serum creatinine during renal biopsy (P〈0.01) in the IgAN-ESRD group. Conclusion Among the ACE, AGT, ATIR and CYP gene polymorphisms, only the DD genotype may predispose the individual to increased risk of progression to ESRD in the Chinese population.