剩余寿命(Remaining useful lifetime,RUL)估计是设备视情维护和预测与健康管理(Prognostics and health management,PHM)中的一项关键问题.采用退化过程建模进行剩余寿命估计的研究中,现有方法仅考虑了具有线性或可以线性化的退化轨迹...剩余寿命(Remaining useful lifetime,RUL)估计是设备视情维护和预测与健康管理(Prognostics and health management,PHM)中的一项关键问题.采用退化过程建模进行剩余寿命估计的研究中,现有方法仅考虑了具有线性或可以线性化的退化轨迹的问题.本文提出了一种基于扩散过程的非线性退化过程建模方法,在首达时间的意义下,推导出了剩余寿命的分布.该方法可以描述一般的非线性退化轨迹,现有的线性退化建模方法是其特例.在参数的推断中,考虑到真实的退化过程受到测量误差的影响,难以直接测量得到,因此,在退化建模的过程中引入了测量误差对退化观测数据的影响,通过观测数据,提出了一种退化模型未知参数的极大似然估计方法.最后,通过激光发生器和陀螺仪的退化测量数据验证了本文方法明显优于线性建模方法,具有潜在的工程应用价值.展开更多
Health management permits the reliability of a system and plays a increasingly important role for achieving efficient system-level maintenance.It has been used for remaining useful life(RUL) prognostics of electroni...Health management permits the reliability of a system and plays a increasingly important role for achieving efficient system-level maintenance.It has been used for remaining useful life(RUL) prognostics of electronics-rich system including avionics.Prognostics and health management(PHM) have become highly desirable to provide avionics with system level health management.This paper presents a health management and fusion prognostic model for avionics system,combining three baseline prognostic approaches that are model-based,data-driven and knowledge-based approaches,and integrates merits as well as eliminates some limitations of each single approach to achieve fusion prognostics and improved prognostic performance of RUL estimation.A fusion model built upon an optimal linear combination forecast model is then utilized to fuse single prognostic algorithm representing the three baseline approaches correspondingly,and the presented case study shows that the fusion prognostics can provide RUL estimation more accurate and more robust than either algorithm alone.展开更多
An accurate estimation of the remaining useful life(RUL) not only contributes to an effective application of an aviation piston pump, but also meets the necessity of condition based maintenance(CBM). For the curre...An accurate estimation of the remaining useful life(RUL) not only contributes to an effective application of an aviation piston pump, but also meets the necessity of condition based maintenance(CBM). For the current RUL evaluation methods, a model-based method is inappropriate for the degradation process of an aviation piston pump due to difficulties of modeling, while a data-based method rarely presents high-accuracy prediction in a long period of time. In this work,an adaptive-order particle filter(AOPF) prognostic process is proposed aiming at improving long-term prediction accuracy of RUL by combining both kinds of methods. A dynamic model is initialized by a data-driven or empirical method. When a new observation comes, the prior state distribution is approximated by a current model. The order of the current model is updated adaptively by fusing the information of the observation. Monte Carlo simulation is employed for estimating the posterior probability density function of future states of the pump's degradation.With updating the order number adaptively, the method presents a higher precision in contrast with those of traditional methods. In a case study, the proposed AOPF method is adopted to forecast the degradation status of an aviation piston pump with experimental return oil flow data, and the analytical results show the effectiveness of the proposed AOPF method.展开更多
文摘剩余寿命(Remaining useful lifetime,RUL)估计是设备视情维护和预测与健康管理(Prognostics and health management,PHM)中的一项关键问题.采用退化过程建模进行剩余寿命估计的研究中,现有方法仅考虑了具有线性或可以线性化的退化轨迹的问题.本文提出了一种基于扩散过程的非线性退化过程建模方法,在首达时间的意义下,推导出了剩余寿命的分布.该方法可以描述一般的非线性退化轨迹,现有的线性退化建模方法是其特例.在参数的推断中,考虑到真实的退化过程受到测量误差的影响,难以直接测量得到,因此,在退化建模的过程中引入了测量误差对退化观测数据的影响,通过观测数据,提出了一种退化模型未知参数的极大似然估计方法.最后,通过激光发生器和陀螺仪的退化测量数据验证了本文方法明显优于线性建模方法,具有潜在的工程应用价值.
文摘Health management permits the reliability of a system and plays a increasingly important role for achieving efficient system-level maintenance.It has been used for remaining useful life(RUL) prognostics of electronics-rich system including avionics.Prognostics and health management(PHM) have become highly desirable to provide avionics with system level health management.This paper presents a health management and fusion prognostic model for avionics system,combining three baseline prognostic approaches that are model-based,data-driven and knowledge-based approaches,and integrates merits as well as eliminates some limitations of each single approach to achieve fusion prognostics and improved prognostic performance of RUL estimation.A fusion model built upon an optimal linear combination forecast model is then utilized to fuse single prognostic algorithm representing the three baseline approaches correspondingly,and the presented case study shows that the fusion prognostics can provide RUL estimation more accurate and more robust than either algorithm alone.
基金co-supported by the National Natural Science Foundation of China(Nos.51620105010,51575019)National Basic Research Program of China(No.2014CB046400)Program 111 of China
文摘An accurate estimation of the remaining useful life(RUL) not only contributes to an effective application of an aviation piston pump, but also meets the necessity of condition based maintenance(CBM). For the current RUL evaluation methods, a model-based method is inappropriate for the degradation process of an aviation piston pump due to difficulties of modeling, while a data-based method rarely presents high-accuracy prediction in a long period of time. In this work,an adaptive-order particle filter(AOPF) prognostic process is proposed aiming at improving long-term prediction accuracy of RUL by combining both kinds of methods. A dynamic model is initialized by a data-driven or empirical method. When a new observation comes, the prior state distribution is approximated by a current model. The order of the current model is updated adaptively by fusing the information of the observation. Monte Carlo simulation is employed for estimating the posterior probability density function of future states of the pump's degradation.With updating the order number adaptively, the method presents a higher precision in contrast with those of traditional methods. In a case study, the proposed AOPF method is adopted to forecast the degradation status of an aviation piston pump with experimental return oil flow data, and the analytical results show the effectiveness of the proposed AOPF method.