An investigation was conducted on the effect of organic matter (OM) and pH on mercury (Hg) release from soils. Hg release flux was measured using the dynamic flux chamber (DFC) combined with the Lumex multifunct...An investigation was conducted on the effect of organic matter (OM) and pH on mercury (Hg) release from soils. Hg release flux was measured using the dynamic flux chamber (DFC) combined with the Lumex multifunctional mercury analyzer in both laboratory experiment and field monitoring. The results showed that Hg emission from the OM-added soils was apparently low because of the high affinity of OM to Hg, resulting in the reverse order as the amount of OM addition. Meanwhile, Hg release flux from different pH value soils exhibited the same trend for both Hg^2+ and Hg2^2+ treatment, increasing the Hg flux with pH value of soils increasing. The trend of Hg release in the pH dependence experiment has been well in agreement with that from the field test. In addition, Hg release seemed to be related to its species in the soil, the flux from Hg^2+-added soil was obviously higher than that of Hg2^2+-added soil by the laboratory experiment.展开更多
A wave flume experiment was conducted to study nutrient fluxes at water-sediment interface of Meiliang Bay under different hydrodynamic conditions. The results reveal that hydrodynamics has remarkable effects on nutri...A wave flume experiment was conducted to study nutrient fluxes at water-sediment interface of Meiliang Bay under different hydrodynamic conditions. The results reveal that hydrodynamics has remarkable effects on nutrient fluxes in this area. With a bottom wave stress of 0.019 N m-2 (equivalent to disturbance caused by wind SE 5-7 m s-1 at the sediment sample site of Meiliang Bay), the fluxes of TN, TDN and NH4+-N were separately 1.92× 10-3, -1.81 × 10-4 and 5.28× 10-4 mg m-2 s-1(positive for upward and negative for downward), but for TP, TDP and SRP, the fluxes were 5.69 × 10-4, 1.68 × 10-4 and -1.29 × 10-4 mgm-2 s-1. In order to calculate the released amount of nutrients based on these results, statistic analysis on the long-term meteorological data was conducted.The result shows that the maximum lasting time for wind SE 5-7 m s-1 in this area is about 15 h in summer. Further calculation shows that 111 t TN, 32 t NH4+-N, 34 t TP and 10 t TDP can be released into water (the sediment area was 47.45% of the whole surface area), resulting in concentration increase of 0.025, 0.007, 0.007 and 0.002 mg L-1 separately. With stronger disturbance (bottom wave stress is 0.217 N m-2 which is equivalent to disturbance caused by wind SE 10-11 m s-1 at the same site), there has been significant increase of nutrient fluxes (1.16× 10-2, 6.76×10-3, 1.14× 10-2 and 2.14× 10-3 mgm-2 s-1 for TN, DTN and NH4+-N and TP). The exceptions were TDP with flux having a decrease (measured to be 9.54× 10-5 mgm-2 s-1 ) and SRP with flux having a small increase (measured to be 5.42 × 10-5 mgm-2 s-1). The same statistic analysis on meteorological data reveal that the maximum lasting time for wind SE 10-11 m s-1 is no more than 5 h. Based on the nutrient fluxes and the wind lasting-time, similar calculations were also made suggesting that 232 t TN, 134.9 t TDN, 228 t NH4+-N, 42.7 t TP, 2.0 t TDP and 1.1 t SRP will be released from sediment at this hydrodynamic condition resulting in the concentration increases of 0.050, 0.029, 0.049, 0展开更多
基金Project supported by the National Natural Science Foundation of China(No.405730065,406730063)
文摘An investigation was conducted on the effect of organic matter (OM) and pH on mercury (Hg) release from soils. Hg release flux was measured using the dynamic flux chamber (DFC) combined with the Lumex multifunctional mercury analyzer in both laboratory experiment and field monitoring. The results showed that Hg emission from the OM-added soils was apparently low because of the high affinity of OM to Hg, resulting in the reverse order as the amount of OM addition. Meanwhile, Hg release flux from different pH value soils exhibited the same trend for both Hg^2+ and Hg2^2+ treatment, increasing the Hg flux with pH value of soils increasing. The trend of Hg release in the pH dependence experiment has been well in agreement with that from the field test. In addition, Hg release seemed to be related to its species in the soil, the flux from Hg^2+-added soil was obviously higher than that of Hg2^2+-added soil by the laboratory experiment.
基金supported by the Chinese Academy of Sciences(Grant No.KZCX1-SW-12)the National Natural Science Foundation of China(Grant No.40501078)+1 种基金the Ministry of Science and Technology of China(Grant No.2002AA601011-9-1)the Director Foundation of Nanjing Institute of Geography&Limnology,the Chinese Academy of Sciences.
文摘A wave flume experiment was conducted to study nutrient fluxes at water-sediment interface of Meiliang Bay under different hydrodynamic conditions. The results reveal that hydrodynamics has remarkable effects on nutrient fluxes in this area. With a bottom wave stress of 0.019 N m-2 (equivalent to disturbance caused by wind SE 5-7 m s-1 at the sediment sample site of Meiliang Bay), the fluxes of TN, TDN and NH4+-N were separately 1.92× 10-3, -1.81 × 10-4 and 5.28× 10-4 mg m-2 s-1(positive for upward and negative for downward), but for TP, TDP and SRP, the fluxes were 5.69 × 10-4, 1.68 × 10-4 and -1.29 × 10-4 mgm-2 s-1. In order to calculate the released amount of nutrients based on these results, statistic analysis on the long-term meteorological data was conducted.The result shows that the maximum lasting time for wind SE 5-7 m s-1 in this area is about 15 h in summer. Further calculation shows that 111 t TN, 32 t NH4+-N, 34 t TP and 10 t TDP can be released into water (the sediment area was 47.45% of the whole surface area), resulting in concentration increase of 0.025, 0.007, 0.007 and 0.002 mg L-1 separately. With stronger disturbance (bottom wave stress is 0.217 N m-2 which is equivalent to disturbance caused by wind SE 10-11 m s-1 at the same site), there has been significant increase of nutrient fluxes (1.16× 10-2, 6.76×10-3, 1.14× 10-2 and 2.14× 10-3 mgm-2 s-1 for TN, DTN and NH4+-N and TP). The exceptions were TDP with flux having a decrease (measured to be 9.54× 10-5 mgm-2 s-1 ) and SRP with flux having a small increase (measured to be 5.42 × 10-5 mgm-2 s-1). The same statistic analysis on meteorological data reveal that the maximum lasting time for wind SE 10-11 m s-1 is no more than 5 h. Based on the nutrient fluxes and the wind lasting-time, similar calculations were also made suggesting that 232 t TN, 134.9 t TDN, 228 t NH4+-N, 42.7 t TP, 2.0 t TDP and 1.1 t SRP will be released from sediment at this hydrodynamic condition resulting in the concentration increases of 0.050, 0.029, 0.049, 0