Affine quantization is a parallel procedure to canonical quantization, which is ideally suited to deal with non-renormalizable scalar models as well as quantum gravity. The basic applications of this approach lead to ...Affine quantization is a parallel procedure to canonical quantization, which is ideally suited to deal with non-renormalizable scalar models as well as quantum gravity. The basic applications of this approach lead to the common goals of any quantization, such as Schroedinger’s representation and Schroedinger’s equation. Careful attention is paid toward seeking favored classical variables, which are those that should be promoted to the principal quantum operators. This effort leads toward classical variables that have a constant positive, zero, or negative curvature, which typically characterize such favored variables. This focus leans heavily toward affine variables with a constant negative curvature, which leads to a surprisingly accommodating analysis of non-renormalizable scalar models as well as Einstein’s general relativity.展开更多
It is proved strictly based on general relativity that two important factors are neglected in LIGO experiments by using Michelson interferometers so that fatal mistakes were caused. One is that the gravitational wave ...It is proved strictly based on general relativity that two important factors are neglected in LIGO experiments by using Michelson interferometers so that fatal mistakes were caused. One is that the gravitational wave changes the wavelength of light. Another is that light’s speed is not a constant when gravitational waves exist. According to general relativity, gravitational wave affects spatial distance, so it also affects the wavelength of light synchronously. By considering this fact, the phase differences of lasers were invariable when gravitational waves passed through Michelson interferometers. In addition, when gravitational waves exist, the spatial part of metric changes but the time part of metric is unchanged. In this way, light’s speed is not a constant. When the calculation method of time difference is used in LIGO experiments, the phase shift of interference fringes is still zero. So the design principle of LIGO experiment is wrong. It was impossible for LIGO to detect gravitational wave by using Michelson interferometers. Because light’s speed is not a constant, the signals of LIGO experiments become mismatching. It means that these signals are noises actually, caused by occasional reasons, no gravitational waves are detected really. In fact, in the history of physics, Michelson and Morley tried to find the absolute motion of the earth by using Michelson interferometers but failed at last. The basic principle of LIGO experiment is the same as that of Michelson-Morley experiment in which the phases of lights were invariable. Only zero result can be obtained, so LIGO experiments are destined failed to find gravitational waves.展开更多
This is a Unified Field description based on the holographic Time Dilation Cosmology, TDC, model, which is an eternal continuum evolving forward in the forward direction of time, at the speed of light, c, at an invari...This is a Unified Field description based on the holographic Time Dilation Cosmology, TDC, model, which is an eternal continuum evolving forward in the forward direction of time, at the speed of light, c, at an invariant 1 s/s rate of time. This is the Fundamental Direction of Evolution, FDE. There is also an evolution down time dilation gradients, the Gravitational Direction of Evolution, GDE. These evolutions are gravity, which is the evolutionary force in time. Gravitational velocities are compensation for the difference in the rate of time, dRt, in a dilation field, and the dRtis equal to the compensatory velocity’s percentage of c, and is a measure of the force in time inducing the velocity. In applied force induced velocities, the dRt is a measure of the resistance in time to the induced velocity, which might be called “anti-gravity” or “negative gravity”. The two effects keep the continuum uniformly evolving forward at c. It is demonstrated that gravity is already a part of the electromagnetic field equations in way of the dRt element contained in the TDC velocity formula. Einstein’s energy formula is defined as a velocity formula and a modified version is used for charged elementary particle solutions. A time dilation-based derivation of the Lorentz force ties gravity directly to the electromagnetic field proving the unified field of gravity and the EMF. It is noted how we could possibly create gravity drives. This is followed by a discussion of black holes, proving supermassive objects, like massive black hole singularities, are impossible, and that black holes are massless Magnetospheric Eternally Collapsing Objects (MECOs) that are vortices in spacetime. .展开更多
In 1951, Dirac proposed a formalism for a Lorentz invariant Aether with a vacuum state that contains all possible velocity states at each space-time point. Dirac showed no explicit path from the Aether towards the Qua...In 1951, Dirac proposed a formalism for a Lorentz invariant Aether with a vacuum state that contains all possible velocity states at each space-time point. Dirac showed no explicit path from the Aether towards the Quantum Mechanics. In this paper, we demonstrate that Dirac’s proposed Aether can be described by a lattice of possible events in space-time built in the local Lorentz frame. The idealised case of single velocity state leads to the famous Dirac equation for a plane wave state and is compatible with quantum statistics. On the lattice, possible space-time events are connected by the Dirac spinors which provide the probability of observing an event. The inertial mass of a particle is shown to be equivalent to the density of possible events on the lattice. Variation of the lattice density of events modifies the metric and provides a space-time curvature leading to the Hilbert action associated with general relativity. In classical limit, the perturbation in the density of possible events of the Aether is proportional to the Newtonian gravitational potential.展开更多
We demonstrate that: 1) The Taub-NUT universe is finite. 2) The Taub-NUT universe is much larger than the maximum observable distance according to the standard theory of cosmology. 3) At large distances the spectral s...We demonstrate that: 1) The Taub-NUT universe is finite. 2) The Taub-NUT universe is much larger than the maximum observable distance according to the standard theory of cosmology. 3) At large distances the spectral shift turns into a blueshift. 4) At large distances time dilation turns into time contraction.展开更多
This paper is a brief review of our work on the Planck quantized version of general relativity theory. It demonstrates several straightforward methods to rewrite the same equations that we have already presented in ot...This paper is a brief review of our work on the Planck quantized version of general relativity theory. It demonstrates several straightforward methods to rewrite the same equations that we have already presented in other papers. We also explore a relatively new general relativity-inspired field equation based on the original Newtonian mass, which is very different from today’s kilogram mass. Additionally, we examine two other field equations based on collision space-time, where both energy and matter can be described simply as space and time. We are thereby fulfilling Einstein’s dream of a theory where energy and mass are not needed, or are just aspects of space and time. If this is extended beyond the 4-dimensional space-time formalism of general relativity theory to a 6-dimensional framework with 3 space dimensions and 3 time dimensions, this ultimately reveals that they are two sides of the same coin. In reality, it is a three-dimensional space-time theory, where space and time are just two sides of the same coin.展开更多
This paper proposes an extension to the Einstein Field Equations by integrating quantum informational measures, specifically entanglement entropy and quantum complexity. These modified equations aim to bridge the gap ...This paper proposes an extension to the Einstein Field Equations by integrating quantum informational measures, specifically entanglement entropy and quantum complexity. These modified equations aim to bridge the gap between general relativity and quantum mechanics, offering a unified framework that incorporates the geometric properties of spacetime with fundamental aspects of quantum information theory. The theoretical implications of this approach include potential resolutions to longstanding issues like the black hole information paradox and new perspectives on dark energy. The paper presents modified versions of classical solutions such as the Schwarzschild metric and Friedmann equations, incorporating quantum corrections. It also outlines testable predictions in areas including gravitational wave propagation, black hole shadows, and cosmological observables. We propose several avenues for future research, including exploring connections with other quantum gravity approaches designing experiments to test the theory’s predictions. This work contributes to the ongoing exploration of quantum gravity, offering a framework that potentially unifies general relativity and quantum mechanics with testable predictions.展开更多
Gravitational wave detection has ushered in a new era of observing the universe, providing humanity with a novel window for cosmic cognition. This theoretical study systematically traces the developmental trajectory o...Gravitational wave detection has ushered in a new era of observing the universe, providing humanity with a novel window for cosmic cognition. This theoretical study systematically traces the developmental trajectory of gravitational wave detection technology and delves into its profound impact on cosmological research. From Einstein’s prediction in general relativity to LIGO’s groundbreaking discovery, the article meticulously delineates the key theoretical and technological milestones in gravitational wave detection, with particular emphasis on elucidating the principles and evolution of core detection technologies such as laser interferometers. The research thoroughly explores the theoretical application value of gravitational waves in verifying general relativity, studying the physics of compact celestial bodies like black holes and neutron stars, and precisely measuring cosmological parameters. The article postulates that gravitational wave observations may offer new research perspectives for addressing cosmological conundrums such as dark matter, dark energy, and early universe evolution. The study also discusses the scientific prospects of combining gravitational wave observations with electromagnetic waves, neutrinos, and other multi-messenger observations, analyzing the potential value of this multi-messenger astronomy in deepening cosmic cognition. Looking ahead, the article examines cutting-edge concepts such as space-based gravitational wave detectors and predicts potential developmental directions for gravitational wave astronomy. This research not only elucidates the theoretical foundations of gravitational wave detection technology but also provides a comprehensive theoretical framework for understanding the far-reaching impact of gravitational waves on modern cosmology.展开更多
When D:ξ→η is a linear ordinary differential (OD) or partial differential (PD) operator, a “direct problem” is to find the generating compatibility conditions (CC) in the form of an operator D<sub>1:</su...When D:ξ→η is a linear ordinary differential (OD) or partial differential (PD) operator, a “direct problem” is to find the generating compatibility conditions (CC) in the form of an operator D<sub>1:</sub>η→ξ such that Dξ = η implies D<sub>1</sub>η = 0. When D is involutive, the procedure provides successive first-order involutive operators D<sub>1</sub>,...,D<sub>n </sub>when the ground manifold has dimension n. Conversely, when D<sub>1</sub> is given, a much more difficult “inverse problem” is to look for an operator D:ξ→η having the generating CC D<sub>1</sub>η = 0. If this is possible, that is when the differential module defined by D<sub>1</sub> is “torsion-free”, that is when there does not exist any observable quantity which is a sum of derivatives of η that could be a solution of an autonomous OD or PD equation for itself, one shall say that the operator D<sub>1</sub> is parametrized by D. The parametrization is said to be “minimum” if the differential module defined by D does not contain a free differential submodule. The systematic use of the adjoint of a differential operator provides a constructive test with five steps using double differential duality. We prove and illustrate through many explicit examples the fact that a control system is controllable if and only if it can be parametrized. Accordingly, the controllability of any OD or PD control system is a “built in” property not depending on the choice of the input and output variables among the system variables. In the OD case and when D<sub>1</sub> is formally surjective, controllability just amounts to the formal injectivity of ad(D<sub>1</sub>), even in the variable coefficients case, a result still not acknowledged by the control community. Among other applications, the parametrization of the Cauchy stress operator in arbitrary dimension n has attracted many famous scientists (G. B. Airy in 1863 for n = 2, J. C. Maxwell in 1870, E. Beltrami in 1892 for n = 3, and A. Einstein in 1915 for n = 4). We 展开更多
Planck scale plays a vital role in describing fundamental forces. Space time describes strength of fundamental force. In this paper, Einstein’s general relativity equation has been described in terms of contraction a...Planck scale plays a vital role in describing fundamental forces. Space time describes strength of fundamental force. In this paper, Einstein’s general relativity equation has been described in terms of contraction and expansion forces of space time. According to this, the space time with Planck diameter is a flat space time. This is the only diameter of space time that can be used as signal transformation in special relativity. This space time diameter defines the fundamental force which belongs to that space time. In quantum mechanics, this space time diameter is only the quantum of space which belongs to that particular fundamental force. Einstein’s general relativity equation and Planck parameters of quantum mechanics have been written in terms of equations containing a constant “K”, thus found a new equation for transformation of general relativity space time in to quantum space time. In this process of synchronization, there is a possibility of a new fundamental force between electromagnetic and gravitational forces with Planck length as its space time diameter. It is proposed that dark matter is that fundamental force carrying particle. By grand unification equation with space-time diameter, we found a coupling constant as per standard model “α<sub>s</sub>” for that fundamental force is 1.08 × 10<sup>-23</sup>. Its energy calculated as 113 MeV. A group of experimental scientists reported the energy of dark matter particle as 17 MeV. Thorough review may advance science further.展开更多
The paper is devoted to a spherically symmetric problem of General Relativity (GR) for a fluid sphere. The problem is solved within the framework of a special geometry of the Riemannian space induced by gravitation. A...The paper is devoted to a spherically symmetric problem of General Relativity (GR) for a fluid sphere. The problem is solved within the framework of a special geometry of the Riemannian space induced by gravitation. According to this geometry, the four-dimensional Riemannian space is assumed to be Euclidean with respect to the space coordinates and Riemannian with respect to the time coordinate. Such interpretation of the Riemannian space allows us to obtain complete set of GR equations for the external empty space and the internal spaces for incompressible and compressible perfect fluids. The obtained analytical solution for an incompressible fluid is compared with the Schwarzchild solution. For a sphere consisting of compressible fluid or gas, a numerical solution is presented and discussed.展开更多
Although General Relativity is the classic example of a physical theory based on differential geometry, the momentum tensor is the only part of the field equation that is not derived from or interpreted with different...Although General Relativity is the classic example of a physical theory based on differential geometry, the momentum tensor is the only part of the field equation that is not derived from or interpreted with differential geometry. This work extends General Relativity and Einstein-Cartan theory by augmenting the Poincaré group with projective (special) conformal transformations, which are translations at conformal infinity. Momentum becomes a part of the differential geometry of spacetime. The Lie algebra of these transformations is represented by vectorfields on an associated Minkowski fiber space. Variation of projective conformal scalar curvature generates a 2-index tensor that serves as linear momentum in the field equations of General Relativity. The computation yields a constructive realization of Mach’s principle: local inertia is determined by local motion relative to mass at conformal infinity in each fiber. The vectorfields have a cellular structure that is similar to that of turbulent fluids.展开更多
We develop a theory of cosmology, which is not based on the cosmological principle. We achieve this without violating the Copernican principle. It is well known that the gravitational redshift associated with the Schw...We develop a theory of cosmology, which is not based on the cosmological principle. We achieve this without violating the Copernican principle. It is well known that the gravitational redshift associated with the Schwarzschild solution applied to the distant supernova does not lead to the observed redsift-distance relationship. We show, however, that generalizations of the Schwarzschild metric, the Taub-NUT metrics, do indeed lead to the observed redshift-distance relationship and to the observed time dilation. These universes are not expanding rather the observed cosmological redshift is due to the gravitational redshift associated with these solutions. Time dilation in these stationary universes has the same dependency on redshift that generally has been seen as proof that space is expanding. Our theory resolves the Hubble tension.展开更多
The origin of elementary particle mass is considered as a function of n-valued graviton quanta. To develop this concept we begin in a cold region of “empty space” comprised of only microscopic gravitons oscillating ...The origin of elementary particle mass is considered as a function of n-valued graviton quanta. To develop this concept we begin in a cold region of “empty space” comprised of only microscopic gravitons oscillating at angular frequency ω. From opposite directions enters a pair of stray protons. Upon colliding, heat and energy are released. Customarily, this phase and what follows afterward would be described by Quantum Chromodynamics (QCD). Instead, we argue for an intermediary step. One in which neighboring gravitons absorb discrete amounts of plane-wave energy. Captured by the graviton, the planewave becomes a standing wave, whereupon its electromagnetic energy densities are converted into gravitational quanta. Immediately thereafter an elementary particle is formed and emitted, having both mass and spin. From absorption to conversion to emission occurs in less than 3.7 × 10−16 s. During this basic unit of hybrid time, general relativity and quantum physics unite into a common set of physical laws. As additional stray protons collide the process continues. Over eons, vast regions of spacetime become populated with low-mass particles. These we recognize to be dark matter by its effects on large scale structures in the universe. Its counterpart, dark energy, arises when the conversion of gravitational quanta to particle emission is interrupted. This causes the gravitational quanta to be ejected. It is recognized by its large scale effects on the universe.展开更多
It is explicitly shown how the Schwarzschild Black Hole Entropy (in all dimensions) emerges from truly point mass sources at r=0due to a non-vanishing scalar curvature involving the Dirac delta distribution. In order ...It is explicitly shown how the Schwarzschild Black Hole Entropy (in all dimensions) emerges from truly point mass sources at r=0due to a non-vanishing scalar curvature involving the Dirac delta distribution. In order to achieve this, one is required to extend the domain of r to negative values −∞≤r≤+∞. It is the density and anisotropic pressure components associated with the point mass delta function source at the origin r=0which furnish the Schwarzschild black hole entropy in all dimensions D≥4after evaluating the Euclidean Einstein-Hilbert action. Two of the most salient results are i) that the observed spacetime dimension D=4is precisely singled out from all the other dimensions when the strong and weak energy conditions are met, and ii) the point mass source described in this work is not the result of a spherically symmetric gravitational collapse of a star as described by the Oppenheimer-Snyder model because we are not neglecting the pressure. As usual, it is required to take the inverse Hawking temperature βHas the length of the circle Sβ1obtained from a compactification of the Euclidean time in thermal field theory which results after a Wick rotation, it=τ, to imaginary time. This approach can be generalized to the Reissner-Nordstrom and Kerr-Newman metrics. The physical implications of this finding warrant further investigation since it suggests a profound connection between the notion of gravitational entropy and spacetime singularities.展开更多
In this paper, we show that massive envelopes made of highly compressed normal matter surrounding dark objects (DEOs) can curve the surrounding spacetime and make the systems observationally indistinguishable from the...In this paper, we show that massive envelopes made of highly compressed normal matter surrounding dark objects (DEOs) can curve the surrounding spacetime and make the systems observationally indistinguishable from their massive black hole counterparts. DEOs are new astrophysical objects that are made up of entropy-free incompressible supranuclear dense superfluid (SuSu-matter), embedded in flat spacetimes and invisible to outside observers, practically trapped in false vacua. Based on highly accurate numerical modelling of the internal structures of pulsars and massive neutron stars, and in combination with using a large variety of EOSs, we show that the mass range of DEOs is practically unbounded from above: it spans those of massive neutron stars, stellar and even supermassive black holes: thanks to the universal maximum density of normal matter, , beyond which normal matter converts into SuSu-matter. We apply the scenario to the Crab and Vela pulsars, the massive magnetar PSR J0740 6620, the presumably massive NS formed in GW170817, and the SMBHs in Sgr A* and M87*. Our numerical results also reveal that DEO-Envelope systems not only mimic massive BHs nicely but also indicate that massive DEOs can hide vast amounts of matter capable of turning our universe into a SuSu-matter-dominated one, essentially trapped in false vacua.展开更多
文摘Affine quantization is a parallel procedure to canonical quantization, which is ideally suited to deal with non-renormalizable scalar models as well as quantum gravity. The basic applications of this approach lead to the common goals of any quantization, such as Schroedinger’s representation and Schroedinger’s equation. Careful attention is paid toward seeking favored classical variables, which are those that should be promoted to the principal quantum operators. This effort leads toward classical variables that have a constant positive, zero, or negative curvature, which typically characterize such favored variables. This focus leans heavily toward affine variables with a constant negative curvature, which leads to a surprisingly accommodating analysis of non-renormalizable scalar models as well as Einstein’s general relativity.
文摘It is proved strictly based on general relativity that two important factors are neglected in LIGO experiments by using Michelson interferometers so that fatal mistakes were caused. One is that the gravitational wave changes the wavelength of light. Another is that light’s speed is not a constant when gravitational waves exist. According to general relativity, gravitational wave affects spatial distance, so it also affects the wavelength of light synchronously. By considering this fact, the phase differences of lasers were invariable when gravitational waves passed through Michelson interferometers. In addition, when gravitational waves exist, the spatial part of metric changes but the time part of metric is unchanged. In this way, light’s speed is not a constant. When the calculation method of time difference is used in LIGO experiments, the phase shift of interference fringes is still zero. So the design principle of LIGO experiment is wrong. It was impossible for LIGO to detect gravitational wave by using Michelson interferometers. Because light’s speed is not a constant, the signals of LIGO experiments become mismatching. It means that these signals are noises actually, caused by occasional reasons, no gravitational waves are detected really. In fact, in the history of physics, Michelson and Morley tried to find the absolute motion of the earth by using Michelson interferometers but failed at last. The basic principle of LIGO experiment is the same as that of Michelson-Morley experiment in which the phases of lights were invariable. Only zero result can be obtained, so LIGO experiments are destined failed to find gravitational waves.
文摘This is a Unified Field description based on the holographic Time Dilation Cosmology, TDC, model, which is an eternal continuum evolving forward in the forward direction of time, at the speed of light, c, at an invariant 1 s/s rate of time. This is the Fundamental Direction of Evolution, FDE. There is also an evolution down time dilation gradients, the Gravitational Direction of Evolution, GDE. These evolutions are gravity, which is the evolutionary force in time. Gravitational velocities are compensation for the difference in the rate of time, dRt, in a dilation field, and the dRtis equal to the compensatory velocity’s percentage of c, and is a measure of the force in time inducing the velocity. In applied force induced velocities, the dRt is a measure of the resistance in time to the induced velocity, which might be called “anti-gravity” or “negative gravity”. The two effects keep the continuum uniformly evolving forward at c. It is demonstrated that gravity is already a part of the electromagnetic field equations in way of the dRt element contained in the TDC velocity formula. Einstein’s energy formula is defined as a velocity formula and a modified version is used for charged elementary particle solutions. A time dilation-based derivation of the Lorentz force ties gravity directly to the electromagnetic field proving the unified field of gravity and the EMF. It is noted how we could possibly create gravity drives. This is followed by a discussion of black holes, proving supermassive objects, like massive black hole singularities, are impossible, and that black holes are massless Magnetospheric Eternally Collapsing Objects (MECOs) that are vortices in spacetime. .
文摘In 1951, Dirac proposed a formalism for a Lorentz invariant Aether with a vacuum state that contains all possible velocity states at each space-time point. Dirac showed no explicit path from the Aether towards the Quantum Mechanics. In this paper, we demonstrate that Dirac’s proposed Aether can be described by a lattice of possible events in space-time built in the local Lorentz frame. The idealised case of single velocity state leads to the famous Dirac equation for a plane wave state and is compatible with quantum statistics. On the lattice, possible space-time events are connected by the Dirac spinors which provide the probability of observing an event. The inertial mass of a particle is shown to be equivalent to the density of possible events on the lattice. Variation of the lattice density of events modifies the metric and provides a space-time curvature leading to the Hilbert action associated with general relativity. In classical limit, the perturbation in the density of possible events of the Aether is proportional to the Newtonian gravitational potential.
文摘We demonstrate that: 1) The Taub-NUT universe is finite. 2) The Taub-NUT universe is much larger than the maximum observable distance according to the standard theory of cosmology. 3) At large distances the spectral shift turns into a blueshift. 4) At large distances time dilation turns into time contraction.
文摘This paper is a brief review of our work on the Planck quantized version of general relativity theory. It demonstrates several straightforward methods to rewrite the same equations that we have already presented in other papers. We also explore a relatively new general relativity-inspired field equation based on the original Newtonian mass, which is very different from today’s kilogram mass. Additionally, we examine two other field equations based on collision space-time, where both energy and matter can be described simply as space and time. We are thereby fulfilling Einstein’s dream of a theory where energy and mass are not needed, or are just aspects of space and time. If this is extended beyond the 4-dimensional space-time formalism of general relativity theory to a 6-dimensional framework with 3 space dimensions and 3 time dimensions, this ultimately reveals that they are two sides of the same coin. In reality, it is a three-dimensional space-time theory, where space and time are just two sides of the same coin.
文摘This paper proposes an extension to the Einstein Field Equations by integrating quantum informational measures, specifically entanglement entropy and quantum complexity. These modified equations aim to bridge the gap between general relativity and quantum mechanics, offering a unified framework that incorporates the geometric properties of spacetime with fundamental aspects of quantum information theory. The theoretical implications of this approach include potential resolutions to longstanding issues like the black hole information paradox and new perspectives on dark energy. The paper presents modified versions of classical solutions such as the Schwarzschild metric and Friedmann equations, incorporating quantum corrections. It also outlines testable predictions in areas including gravitational wave propagation, black hole shadows, and cosmological observables. We propose several avenues for future research, including exploring connections with other quantum gravity approaches designing experiments to test the theory’s predictions. This work contributes to the ongoing exploration of quantum gravity, offering a framework that potentially unifies general relativity and quantum mechanics with testable predictions.
文摘Gravitational wave detection has ushered in a new era of observing the universe, providing humanity with a novel window for cosmic cognition. This theoretical study systematically traces the developmental trajectory of gravitational wave detection technology and delves into its profound impact on cosmological research. From Einstein’s prediction in general relativity to LIGO’s groundbreaking discovery, the article meticulously delineates the key theoretical and technological milestones in gravitational wave detection, with particular emphasis on elucidating the principles and evolution of core detection technologies such as laser interferometers. The research thoroughly explores the theoretical application value of gravitational waves in verifying general relativity, studying the physics of compact celestial bodies like black holes and neutron stars, and precisely measuring cosmological parameters. The article postulates that gravitational wave observations may offer new research perspectives for addressing cosmological conundrums such as dark matter, dark energy, and early universe evolution. The study also discusses the scientific prospects of combining gravitational wave observations with electromagnetic waves, neutrinos, and other multi-messenger observations, analyzing the potential value of this multi-messenger astronomy in deepening cosmic cognition. Looking ahead, the article examines cutting-edge concepts such as space-based gravitational wave detectors and predicts potential developmental directions for gravitational wave astronomy. This research not only elucidates the theoretical foundations of gravitational wave detection technology but also provides a comprehensive theoretical framework for understanding the far-reaching impact of gravitational waves on modern cosmology.
文摘When D:ξ→η is a linear ordinary differential (OD) or partial differential (PD) operator, a “direct problem” is to find the generating compatibility conditions (CC) in the form of an operator D<sub>1:</sub>η→ξ such that Dξ = η implies D<sub>1</sub>η = 0. When D is involutive, the procedure provides successive first-order involutive operators D<sub>1</sub>,...,D<sub>n </sub>when the ground manifold has dimension n. Conversely, when D<sub>1</sub> is given, a much more difficult “inverse problem” is to look for an operator D:ξ→η having the generating CC D<sub>1</sub>η = 0. If this is possible, that is when the differential module defined by D<sub>1</sub> is “torsion-free”, that is when there does not exist any observable quantity which is a sum of derivatives of η that could be a solution of an autonomous OD or PD equation for itself, one shall say that the operator D<sub>1</sub> is parametrized by D. The parametrization is said to be “minimum” if the differential module defined by D does not contain a free differential submodule. The systematic use of the adjoint of a differential operator provides a constructive test with five steps using double differential duality. We prove and illustrate through many explicit examples the fact that a control system is controllable if and only if it can be parametrized. Accordingly, the controllability of any OD or PD control system is a “built in” property not depending on the choice of the input and output variables among the system variables. In the OD case and when D<sub>1</sub> is formally surjective, controllability just amounts to the formal injectivity of ad(D<sub>1</sub>), even in the variable coefficients case, a result still not acknowledged by the control community. Among other applications, the parametrization of the Cauchy stress operator in arbitrary dimension n has attracted many famous scientists (G. B. Airy in 1863 for n = 2, J. C. Maxwell in 1870, E. Beltrami in 1892 for n = 3, and A. Einstein in 1915 for n = 4). We
文摘Planck scale plays a vital role in describing fundamental forces. Space time describes strength of fundamental force. In this paper, Einstein’s general relativity equation has been described in terms of contraction and expansion forces of space time. According to this, the space time with Planck diameter is a flat space time. This is the only diameter of space time that can be used as signal transformation in special relativity. This space time diameter defines the fundamental force which belongs to that space time. In quantum mechanics, this space time diameter is only the quantum of space which belongs to that particular fundamental force. Einstein’s general relativity equation and Planck parameters of quantum mechanics have been written in terms of equations containing a constant “K”, thus found a new equation for transformation of general relativity space time in to quantum space time. In this process of synchronization, there is a possibility of a new fundamental force between electromagnetic and gravitational forces with Planck length as its space time diameter. It is proposed that dark matter is that fundamental force carrying particle. By grand unification equation with space-time diameter, we found a coupling constant as per standard model “α<sub>s</sub>” for that fundamental force is 1.08 × 10<sup>-23</sup>. Its energy calculated as 113 MeV. A group of experimental scientists reported the energy of dark matter particle as 17 MeV. Thorough review may advance science further.
文摘The paper is devoted to a spherically symmetric problem of General Relativity (GR) for a fluid sphere. The problem is solved within the framework of a special geometry of the Riemannian space induced by gravitation. According to this geometry, the four-dimensional Riemannian space is assumed to be Euclidean with respect to the space coordinates and Riemannian with respect to the time coordinate. Such interpretation of the Riemannian space allows us to obtain complete set of GR equations for the external empty space and the internal spaces for incompressible and compressible perfect fluids. The obtained analytical solution for an incompressible fluid is compared with the Schwarzchild solution. For a sphere consisting of compressible fluid or gas, a numerical solution is presented and discussed.
文摘Although General Relativity is the classic example of a physical theory based on differential geometry, the momentum tensor is the only part of the field equation that is not derived from or interpreted with differential geometry. This work extends General Relativity and Einstein-Cartan theory by augmenting the Poincaré group with projective (special) conformal transformations, which are translations at conformal infinity. Momentum becomes a part of the differential geometry of spacetime. The Lie algebra of these transformations is represented by vectorfields on an associated Minkowski fiber space. Variation of projective conformal scalar curvature generates a 2-index tensor that serves as linear momentum in the field equations of General Relativity. The computation yields a constructive realization of Mach’s principle: local inertia is determined by local motion relative to mass at conformal infinity in each fiber. The vectorfields have a cellular structure that is similar to that of turbulent fluids.
文摘We develop a theory of cosmology, which is not based on the cosmological principle. We achieve this without violating the Copernican principle. It is well known that the gravitational redshift associated with the Schwarzschild solution applied to the distant supernova does not lead to the observed redsift-distance relationship. We show, however, that generalizations of the Schwarzschild metric, the Taub-NUT metrics, do indeed lead to the observed redshift-distance relationship and to the observed time dilation. These universes are not expanding rather the observed cosmological redshift is due to the gravitational redshift associated with these solutions. Time dilation in these stationary universes has the same dependency on redshift that generally has been seen as proof that space is expanding. Our theory resolves the Hubble tension.
文摘The origin of elementary particle mass is considered as a function of n-valued graviton quanta. To develop this concept we begin in a cold region of “empty space” comprised of only microscopic gravitons oscillating at angular frequency ω. From opposite directions enters a pair of stray protons. Upon colliding, heat and energy are released. Customarily, this phase and what follows afterward would be described by Quantum Chromodynamics (QCD). Instead, we argue for an intermediary step. One in which neighboring gravitons absorb discrete amounts of plane-wave energy. Captured by the graviton, the planewave becomes a standing wave, whereupon its electromagnetic energy densities are converted into gravitational quanta. Immediately thereafter an elementary particle is formed and emitted, having both mass and spin. From absorption to conversion to emission occurs in less than 3.7 × 10−16 s. During this basic unit of hybrid time, general relativity and quantum physics unite into a common set of physical laws. As additional stray protons collide the process continues. Over eons, vast regions of spacetime become populated with low-mass particles. These we recognize to be dark matter by its effects on large scale structures in the universe. Its counterpart, dark energy, arises when the conversion of gravitational quanta to particle emission is interrupted. This causes the gravitational quanta to be ejected. It is recognized by its large scale effects on the universe.
文摘It is explicitly shown how the Schwarzschild Black Hole Entropy (in all dimensions) emerges from truly point mass sources at r=0due to a non-vanishing scalar curvature involving the Dirac delta distribution. In order to achieve this, one is required to extend the domain of r to negative values −∞≤r≤+∞. It is the density and anisotropic pressure components associated with the point mass delta function source at the origin r=0which furnish the Schwarzschild black hole entropy in all dimensions D≥4after evaluating the Euclidean Einstein-Hilbert action. Two of the most salient results are i) that the observed spacetime dimension D=4is precisely singled out from all the other dimensions when the strong and weak energy conditions are met, and ii) the point mass source described in this work is not the result of a spherically symmetric gravitational collapse of a star as described by the Oppenheimer-Snyder model because we are not neglecting the pressure. As usual, it is required to take the inverse Hawking temperature βHas the length of the circle Sβ1obtained from a compactification of the Euclidean time in thermal field theory which results after a Wick rotation, it=τ, to imaginary time. This approach can be generalized to the Reissner-Nordstrom and Kerr-Newman metrics. The physical implications of this finding warrant further investigation since it suggests a profound connection between the notion of gravitational entropy and spacetime singularities.
文摘In this paper, we show that massive envelopes made of highly compressed normal matter surrounding dark objects (DEOs) can curve the surrounding spacetime and make the systems observationally indistinguishable from their massive black hole counterparts. DEOs are new astrophysical objects that are made up of entropy-free incompressible supranuclear dense superfluid (SuSu-matter), embedded in flat spacetimes and invisible to outside observers, practically trapped in false vacua. Based on highly accurate numerical modelling of the internal structures of pulsars and massive neutron stars, and in combination with using a large variety of EOSs, we show that the mass range of DEOs is practically unbounded from above: it spans those of massive neutron stars, stellar and even supermassive black holes: thanks to the universal maximum density of normal matter, , beyond which normal matter converts into SuSu-matter. We apply the scenario to the Crab and Vela pulsars, the massive magnetar PSR J0740 6620, the presumably massive NS formed in GW170817, and the SMBHs in Sgr A* and M87*. Our numerical results also reveal that DEO-Envelope systems not only mimic massive BHs nicely but also indicate that massive DEOs can hide vast amounts of matter capable of turning our universe into a SuSu-matter-dominated one, essentially trapped in false vacua.