期刊文献+
共找到281篇文章
< 1 2 15 >
每页显示 20 50 100
广义相对论的产生与发展 被引量:18
1
作者 张元仲 《力学进展》 EI CSCD 北大核心 2002年第4期495-504,共10页
首先简单扼要地评述了相对论(狭义相对论和广义相对论)的历史背景,指出它是物理学发展的必然结果:一些物理实验结果与牛顿理论的矛盾召唤着新理论的诞生;为解决这些矛盾而对牛顿理论所做的大量修补工作为相对论的发现奠定了基础;放弃... 首先简单扼要地评述了相对论(狭义相对论和广义相对论)的历史背景,指出它是物理学发展的必然结果:一些物理实验结果与牛顿理论的矛盾召唤着新理论的诞生;为解决这些矛盾而对牛顿理论所做的大量修补工作为相对论的发现奠定了基础;放弃旧的时空观、提出新的物理学原理使爱因斯坦最终建立了相对论.主要部分是广泛而扼要地介绍并评述相对论的主要结果及其实验检验以及最新进展,它们包括:同时性定义、光速不变原理与相对性原理、时间变慢、长度收缩、质-速关系、质-能关系、因果律与超光速;等效原理与广义协变原理、爱因斯坦引力场方程、测地线方程、广义相对论的线性化理论、引力红移、引力波、光线偏折与引力透镜、行星的近日点进动、雷达回波的延缓、中子星、引力塌缩与黑洞、大爆炸宇宙模型、引力能量问题、奇性定理、黑洞热力学与霍金辐射、量子引力等. 展开更多
关键词 广义相对论 狭义相对论 宇宙学 产生 发展
下载PDF
孪生子效应析疑 被引量:14
2
作者 罗蔚茵 郑庆璋 《大学物理》 1999年第6期1-5,共5页
说明孪生子效应是一个在实验上和理论上都已解决了的问题,通过一个具体的例子阐明孪生子效应的物理本质,从而指出不可能观测到“返老还童”的现象。
关键词 孪生子佯廖 狭义相对论 广义相对论 相对论
下载PDF
Using Affine Quantization to Analyze Non-Renormalizable Scalar Fields and the Quantization of Einstein’s Gravity 被引量:11
3
作者 John R. Klauder 《Journal of High Energy Physics, Gravitation and Cosmology》 2020年第4期802-816,共15页
Affine quantization is a parallel procedure to canonical quantization, which is ideally suited to deal with non-renormalizable scalar models as well as quantum gravity. The basic applications of this approach lead to ... Affine quantization is a parallel procedure to canonical quantization, which is ideally suited to deal with non-renormalizable scalar models as well as quantum gravity. The basic applications of this approach lead to the common goals of any quantization, such as Schroedinger’s representation and Schroedinger’s equation. Careful attention is paid toward seeking favored classical variables, which are those that should be promoted to the principal quantum operators. This effort leads toward classical variables that have a constant positive, zero, or negative curvature, which typically characterize such favored variables. This focus leans heavily toward affine variables with a constant negative curvature, which leads to a surprisingly accommodating analysis of non-renormalizable scalar models as well as Einstein’s general relativity. 展开更多
关键词 Favored Variables Affine Quantization Non-Renormalizable Scalars general relativity
下载PDF
LIGO Experiments Cannot Detect Gravitational Waves by Using Laser Michelson Interferometers—Light’s Wavelength and Speed Change Simultaneously When Gravitational Waves Exist Which Make the Detections of Gravitational Waves Impossible for LIGO Experiments 被引量:9
4
作者 Xiaochun Mei Zhixun Huang +1 位作者 Policarpo Yōshin Ulianov Ping Yu 《Journal of Modern Physics》 2016年第13期1749-1761,共13页
It is proved strictly based on general relativity that two important factors are neglected in LIGO experiments by using Michelson interferometers so that fatal mistakes were caused. One is that the gravitational wave ... It is proved strictly based on general relativity that two important factors are neglected in LIGO experiments by using Michelson interferometers so that fatal mistakes were caused. One is that the gravitational wave changes the wavelength of light. Another is that light’s speed is not a constant when gravitational waves exist. According to general relativity, gravitational wave affects spatial distance, so it also affects the wavelength of light synchronously. By considering this fact, the phase differences of lasers were invariable when gravitational waves passed through Michelson interferometers. In addition, when gravitational waves exist, the spatial part of metric changes but the time part of metric is unchanged. In this way, light’s speed is not a constant. When the calculation method of time difference is used in LIGO experiments, the phase shift of interference fringes is still zero. So the design principle of LIGO experiment is wrong. It was impossible for LIGO to detect gravitational wave by using Michelson interferometers. Because light’s speed is not a constant, the signals of LIGO experiments become mismatching. It means that these signals are noises actually, caused by occasional reasons, no gravitational waves are detected really. In fact, in the history of physics, Michelson and Morley tried to find the absolute motion of the earth by using Michelson interferometers but failed at last. The basic principle of LIGO experiment is the same as that of Michelson-Morley experiment in which the phases of lights were invariable. Only zero result can be obtained, so LIGO experiments are destined failed to find gravitational waves. 展开更多
关键词 Gravitational Wave LIGO Experiment general relativity Special relativity Michelson Interferometer Michelson-Morley Experiment GW150914 WG151226
下载PDF
The Unified Field
5
作者 Joseph H. (Cass) Forrington 《Journal of Modern Physics》 2024年第7期1010-1035,共26页
This is a Unified Field description based on the holographic Time Dilation Cosmology, TDC, model, which is an eternal continuum evolving forward in the forward direction of time, at the speed of light, c, at an invari... This is a Unified Field description based on the holographic Time Dilation Cosmology, TDC, model, which is an eternal continuum evolving forward in the forward direction of time, at the speed of light, c, at an invariant 1 s/s rate of time. This is the Fundamental Direction of Evolution, FDE. There is also an evolution down time dilation gradients, the Gravitational Direction of Evolution, GDE. These evolutions are gravity, which is the evolutionary force in time. Gravitational velocities are compensation for the difference in the rate of time, dRt, in a dilation field, and the dRtis equal to the compensatory velocity’s percentage of c, and is a measure of the force in time inducing the velocity. In applied force induced velocities, the dRt is a measure of the resistance in time to the induced velocity, which might be called “anti-gravity” or “negative gravity”. The two effects keep the continuum uniformly evolving forward at c. It is demonstrated that gravity is already a part of the electromagnetic field equations in way of the dRt element contained in the TDC velocity formula. Einstein’s energy formula is defined as a velocity formula and a modified version is used for charged elementary particle solutions. A time dilation-based derivation of the Lorentz force ties gravity directly to the electromagnetic field proving the unified field of gravity and the EMF. It is noted how we could possibly create gravity drives. This is followed by a discussion of black holes, proving supermassive objects, like massive black hole singularities, are impossible, and that black holes are massless Magnetospheric Eternally Collapsing Objects (MECOs) that are vortices in spacetime. . 展开更多
关键词 Unified Field GRAVITY Anti-Gravity Astrophysics Einstein general relativity Special relativity Galactic Rotation Velocities Time Dilation SPACETIME Space Time Spacetime Continuum Quantum Continuum MECO Black Hole Event Horizon Timelike Spacelike Lightlike
下载PDF
爱因斯坦相对论在微观和宇宙范围内的应用 被引量:5
6
作者 方戈亮 赵子夫 +1 位作者 周腾蛟 吕嫣 《沈阳师范大学学报(自然科学版)》 CAS 2005年第4期361-363,共3页
介绍了狭义相对论及其与量子力学的结合预言正电子的存在,广义相对论以及用此理论解释牛顿理论无法解释的水星近日点进动、光谱引力红移和太阳引力场对星光的弯曲.
关键词 狭义相对论 广义相对论 正电子 引力场
下载PDF
广义观测相对论:时空在爱因斯坦广义相对论中为什么弯曲?(上篇)——GOR理论的建立 被引量:2
7
作者 阮晓钢 《北京工业大学学报》 CAS CSCD 北大核心 2023年第2期103-178,共76页
“观测相对论”(observational relativity, OR),基于不同于爱因斯坦狭义相对论之逻辑前提,却导出了形式上与洛伦兹变换完全相同的“广义洛伦兹变换”,概括统一了伽利略变换和洛伦兹变换,揭示了物理学不同观测体系之间以及不同理论体系... “观测相对论”(observational relativity, OR),基于不同于爱因斯坦狭义相对论之逻辑前提,却导出了形式上与洛伦兹变换完全相同的“广义洛伦兹变换”,概括统一了伽利略变换和洛伦兹变换,揭示了物理学不同观测体系之间以及不同理论体系之间的对应关系,赋予玻尔对应原理更为普遍的意义.本文基于OR理论和玻尔对应原理,建立“广义对应原理”;进而,基于“广义对应原理”,将OR理论由惯性时空推广至引力时空,将爱因斯坦广义相对论由光学观测体系推广至一般观测体系,最终,建立起与爱因斯坦广义相对论同构一致的“广义观测相对论”(general observational relativity, GOR). GOR理论为我们带来了有关爱因斯坦广义相对论的全新认识:时空并非真地弯曲——客观真实的时空是不会弯曲的;与一切观测上的相对论性现象一样,所谓“时空弯曲”,并非客观的物理现实,而是观测局域性所致之观测效应. GOR理论概括统一了牛顿万有引力论和爱因斯坦广义相对论两大理论体系. GOR理论中,牛顿万有引力论和爱因斯坦广义相对论皆霍金言下之局部理论(partial theory),分属不同观测体系:牛顿万有引力论乃理想观测体系的产物,而爱因斯坦广义相对论则是光学观测体系的产物.根据GOR理论,不同观测体系存在不同程度的观测局域性,其观测上的引力时空呈现不同程度的弯曲状态:光速是有限的(c<∞),因而,光学观测体系存在观测局域性,这是爱因斯坦广义相对论之引力时空看起来有些弯曲的原因;理想观测体系无观测局域性存在,因而,牛顿万有引力论之引力时空代表客观真实的引力时空.广义对应原理意义下,GOR理论与牛顿万有引力论和爱因斯坦广义相对论具有严格的对应关系:光学观测体系情形,GOR场方程严格地约化为爱因斯坦场方程,GOR运动方程严格地约化为爱因斯坦广义相对论之运动� 展开更多
关键词 对应原理 相对性原理 狭义相对论 广义相对论 观测相对论 局域性原理
下载PDF
From Dirac’s Aether to the Dirac Equation
8
作者 Richard D. Bateson 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第4期1450-1466,共17页
In 1951, Dirac proposed a formalism for a Lorentz invariant Aether with a vacuum state that contains all possible velocity states at each space-time point. Dirac showed no explicit path from the Aether towards the Qua... In 1951, Dirac proposed a formalism for a Lorentz invariant Aether with a vacuum state that contains all possible velocity states at each space-time point. Dirac showed no explicit path from the Aether towards the Quantum Mechanics. In this paper, we demonstrate that Dirac’s proposed Aether can be described by a lattice of possible events in space-time built in the local Lorentz frame. The idealised case of single velocity state leads to the famous Dirac equation for a plane wave state and is compatible with quantum statistics. On the lattice, possible space-time events are connected by the Dirac spinors which provide the probability of observing an event. The inertial mass of a particle is shown to be equivalent to the density of possible events on the lattice. Variation of the lattice density of events modifies the metric and provides a space-time curvature leading to the Hilbert action associated with general relativity. In classical limit, the perturbation in the density of possible events of the Aether is proportional to the Newtonian gravitational potential. 展开更多
关键词 Dirac Aether Lorentz Invariance Dirac Equation Quantum Mechanics Space-Time Lattice Dirac Spinors Inertial Mass Metric Modification Space-Time Curvature general relativity
下载PDF
Cosmological Gravitational Redshift, Spectral Shift and Time in the Taub-NUT Universe
9
作者 Charles H. McGruder III 《Journal of Modern Physics》 2024年第9期1448-1459,共12页
We demonstrate that: 1) The Taub-NUT universe is finite. 2) The Taub-NUT universe is much larger than the maximum observable distance according to the standard theory of cosmology. 3) At large distances the spectral s... We demonstrate that: 1) The Taub-NUT universe is finite. 2) The Taub-NUT universe is much larger than the maximum observable distance according to the standard theory of cosmology. 3) At large distances the spectral shift turns into a blueshift. 4) At large distances time dilation turns into time contraction. 展开更多
关键词 COSMOLOGY general relativity
下载PDF
Planck Quantised General Relativity Theory Written on Different Forms
10
作者 Espen Gaarder Haug 《Journal of Applied Mathematics and Physics》 2024年第6期2281-2301,共21页
This paper is a brief review of our work on the Planck quantized version of general relativity theory. It demonstrates several straightforward methods to rewrite the same equations that we have already presented in ot... This paper is a brief review of our work on the Planck quantized version of general relativity theory. It demonstrates several straightforward methods to rewrite the same equations that we have already presented in other papers. We also explore a relatively new general relativity-inspired field equation based on the original Newtonian mass, which is very different from today’s kilogram mass. Additionally, we examine two other field equations based on collision space-time, where both energy and matter can be described simply as space and time. We are thereby fulfilling Einstein’s dream of a theory where energy and mass are not needed, or are just aspects of space and time. If this is extended beyond the 4-dimensional space-time formalism of general relativity theory to a 6-dimensional framework with 3 space dimensions and 3 time dimensions, this ultimately reveals that they are two sides of the same coin. In reality, it is a three-dimensional space-time theory, where space and time are just two sides of the same coin. 展开更多
关键词 general relativity Planck Quantization Compton Frequency Composite Constant G Quantum Gravity Unification Collision Space-Time
下载PDF
Quantum Extensions to the Einstein Field Equations
11
作者 Logan Nye 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第4期2007-2031,共25页
This paper proposes an extension to the Einstein Field Equations by integrating quantum informational measures, specifically entanglement entropy and quantum complexity. These modified equations aim to bridge the gap ... This paper proposes an extension to the Einstein Field Equations by integrating quantum informational measures, specifically entanglement entropy and quantum complexity. These modified equations aim to bridge the gap between general relativity and quantum mechanics, offering a unified framework that incorporates the geometric properties of spacetime with fundamental aspects of quantum information theory. The theoretical implications of this approach include potential resolutions to longstanding issues like the black hole information paradox and new perspectives on dark energy. The paper presents modified versions of classical solutions such as the Schwarzschild metric and Friedmann equations, incorporating quantum corrections. It also outlines testable predictions in areas including gravitational wave propagation, black hole shadows, and cosmological observables. We propose several avenues for future research, including exploring connections with other quantum gravity approaches designing experiments to test the theory’s predictions. This work contributes to the ongoing exploration of quantum gravity, offering a framework that potentially unifies general relativity and quantum mechanics with testable predictions. 展开更多
关键词 Quantum Mechanics COMPLEXITY Entanglement Entropy GRAVITY general relativity Information
下载PDF
Gravitational Wave Detection Technology Development and Its Contribution to Cosmology
12
作者 Yiqi Xu 《Journal of Applied Mathematics and Physics》 2024年第11期3697-3705,共9页
Gravitational wave detection has ushered in a new era of observing the universe, providing humanity with a novel window for cosmic cognition. This theoretical study systematically traces the developmental trajectory o... Gravitational wave detection has ushered in a new era of observing the universe, providing humanity with a novel window for cosmic cognition. This theoretical study systematically traces the developmental trajectory of gravitational wave detection technology and delves into its profound impact on cosmological research. From Einstein’s prediction in general relativity to LIGO’s groundbreaking discovery, the article meticulously delineates the key theoretical and technological milestones in gravitational wave detection, with particular emphasis on elucidating the principles and evolution of core detection technologies such as laser interferometers. The research thoroughly explores the theoretical application value of gravitational waves in verifying general relativity, studying the physics of compact celestial bodies like black holes and neutron stars, and precisely measuring cosmological parameters. The article postulates that gravitational wave observations may offer new research perspectives for addressing cosmological conundrums such as dark matter, dark energy, and early universe evolution. The study also discusses the scientific prospects of combining gravitational wave observations with electromagnetic waves, neutrinos, and other multi-messenger observations, analyzing the potential value of this multi-messenger astronomy in deepening cosmic cognition. Looking ahead, the article examines cutting-edge concepts such as space-based gravitational wave detectors and predicts potential developmental directions for gravitational wave astronomy. This research not only elucidates the theoretical foundations of gravitational wave detection technology but also provides a comprehensive theoretical framework for understanding the far-reaching impact of gravitational waves on modern cosmology. 展开更多
关键词 Gravitational Waves Detection Technology COSMOLOGY Multi-Messenger Astronomy general relativity
下载PDF
From Control Theory to Gravitational Waves
13
作者 Jean-Francois Pommaret 《Advances in Pure Mathematics》 2024年第2期49-100,共52页
When D:ξ→η is a linear ordinary differential (OD) or partial differential (PD) operator, a “direct problem” is to find the generating compatibility conditions (CC) in the form of an operator D<sub>1:</su... When D:ξ→η is a linear ordinary differential (OD) or partial differential (PD) operator, a “direct problem” is to find the generating compatibility conditions (CC) in the form of an operator D<sub>1:</sub>η→ξ such that Dξ = η implies D<sub>1</sub>η = 0. When D is involutive, the procedure provides successive first-order involutive operators D<sub>1</sub>,...,D<sub>n </sub>when the ground manifold has dimension n. Conversely, when D<sub>1</sub> is given, a much more difficult “inverse problem” is to look for an operator D:ξ→η having the generating CC D<sub>1</sub>η = 0. If this is possible, that is when the differential module defined by D<sub>1</sub> is “torsion-free”, that is when there does not exist any observable quantity which is a sum of derivatives of η that could be a solution of an autonomous OD or PD equation for itself, one shall say that the operator D<sub>1</sub> is parametrized by D. The parametrization is said to be “minimum” if the differential module defined by D does not contain a free differential submodule. The systematic use of the adjoint of a differential operator provides a constructive test with five steps using double differential duality. We prove and illustrate through many explicit examples the fact that a control system is controllable if and only if it can be parametrized. Accordingly, the controllability of any OD or PD control system is a “built in” property not depending on the choice of the input and output variables among the system variables. In the OD case and when D<sub>1</sub> is formally surjective, controllability just amounts to the formal injectivity of ad(D<sub>1</sub>), even in the variable coefficients case, a result still not acknowledged by the control community. Among other applications, the parametrization of the Cauchy stress operator in arbitrary dimension n has attracted many famous scientists (G. B. Airy in 1863 for n = 2, J. C. Maxwell in 1870, E. Beltrami in 1892 for n = 3, and A. Einstein in 1915 for n = 4). We 展开更多
关键词 Differential Operator Differential Sequence Killing Operator Riemann Operator Bianchi Operator Cauchy Operator Control Theory Controllability Elasticity general relativity
下载PDF
New Approach to Synchronize General Relativity and Quantum Mechanics with Constant “K”-Resulting Dark Matter as a New Fundamental Force Particle
14
作者 Siva Prasad Kodukula 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第1期292-302,共11页
Planck scale plays a vital role in describing fundamental forces. Space time describes strength of fundamental force. In this paper, Einstein’s general relativity equation has been described in terms of contraction a... Planck scale plays a vital role in describing fundamental forces. Space time describes strength of fundamental force. In this paper, Einstein’s general relativity equation has been described in terms of contraction and expansion forces of space time. According to this, the space time with Planck diameter is a flat space time. This is the only diameter of space time that can be used as signal transformation in special relativity. This space time diameter defines the fundamental force which belongs to that space time. In quantum mechanics, this space time diameter is only the quantum of space which belongs to that particular fundamental force. Einstein’s general relativity equation and Planck parameters of quantum mechanics have been written in terms of equations containing a constant “K”, thus found a new equation for transformation of general relativity space time in to quantum space time. In this process of synchronization, there is a possibility of a new fundamental force between electromagnetic and gravitational forces with Planck length as its space time diameter. It is proposed that dark matter is that fundamental force carrying particle. By grand unification equation with space-time diameter, we found a coupling constant as per standard model “α<sub>s</sub>” for that fundamental force is 1.08 × 10<sup>-23</sup>. Its energy calculated as 113 MeV. A group of experimental scientists reported the energy of dark matter particle as 17 MeV. Thorough review may advance science further. 展开更多
关键词 general relativity Quantum Mechanics Space Time Dark Matter A New Fundamental Constant “K”
下载PDF
Spherically Symmetric Problem of General Relativity for a Fluid Sphere
15
作者 Valery V. Vasiliev Leonid V. Fedorov 《Journal of Modern Physics》 2024年第4期401-415,共15页
The paper is devoted to a spherically symmetric problem of General Relativity (GR) for a fluid sphere. The problem is solved within the framework of a special geometry of the Riemannian space induced by gravitation. A... The paper is devoted to a spherically symmetric problem of General Relativity (GR) for a fluid sphere. The problem is solved within the framework of a special geometry of the Riemannian space induced by gravitation. According to this geometry, the four-dimensional Riemannian space is assumed to be Euclidean with respect to the space coordinates and Riemannian with respect to the time coordinate. Such interpretation of the Riemannian space allows us to obtain complete set of GR equations for the external empty space and the internal spaces for incompressible and compressible perfect fluids. The obtained analytical solution for an incompressible fluid is compared with the Schwarzchild solution. For a sphere consisting of compressible fluid or gas, a numerical solution is presented and discussed. 展开更多
关键词 general relativity Spherically Symmetric Problem Fluid Sphere
下载PDF
Momentum as Translations at Conformal Infinity
16
作者 Richard James Petti Jacob Luke Graham 《Journal of Applied Mathematics and Physics》 2024年第4期1522-1540,共19页
Although General Relativity is the classic example of a physical theory based on differential geometry, the momentum tensor is the only part of the field equation that is not derived from or interpreted with different... Although General Relativity is the classic example of a physical theory based on differential geometry, the momentum tensor is the only part of the field equation that is not derived from or interpreted with differential geometry. This work extends General Relativity and Einstein-Cartan theory by augmenting the Poincaré group with projective (special) conformal transformations, which are translations at conformal infinity. Momentum becomes a part of the differential geometry of spacetime. The Lie algebra of these transformations is represented by vectorfields on an associated Minkowski fiber space. Variation of projective conformal scalar curvature generates a 2-index tensor that serves as linear momentum in the field equations of General Relativity. The computation yields a constructive realization of Mach’s principle: local inertia is determined by local motion relative to mass at conformal infinity in each fiber. The vectorfields have a cellular structure that is similar to that of turbulent fluids. 展开更多
关键词 Projective Symmetry Conformal Symmetry MOMENTUM general relativity Einstein-Cartan Mach’s Principle
下载PDF
Cosmology without the Cosmological Principle and without Violating the Copernican Principle: Taub-NUT Universe
17
作者 Charles H. McGruder III 《Journal of Modern Physics》 2024年第8期1069-1096,共28页
We develop a theory of cosmology, which is not based on the cosmological principle. We achieve this without violating the Copernican principle. It is well known that the gravitational redshift associated with the Schw... We develop a theory of cosmology, which is not based on the cosmological principle. We achieve this without violating the Copernican principle. It is well known that the gravitational redshift associated with the Schwarzschild solution applied to the distant supernova does not lead to the observed redsift-distance relationship. We show, however, that generalizations of the Schwarzschild metric, the Taub-NUT metrics, do indeed lead to the observed redshift-distance relationship and to the observed time dilation. These universes are not expanding rather the observed cosmological redshift is due to the gravitational redshift associated with these solutions. Time dilation in these stationary universes has the same dependency on redshift that generally has been seen as proof that space is expanding. Our theory resolves the Hubble tension. 展开更多
关键词 COSMOLOGY general relativity
下载PDF
Between Quantum Mechanics and General Relativity
18
作者 Walter James Christensen Jr. 《Journal of Modern Physics》 2024年第8期1199-1228,共30页
The origin of elementary particle mass is considered as a function of n-valued graviton quanta. To develop this concept we begin in a cold region of “empty space” comprised of only microscopic gravitons oscillating ... The origin of elementary particle mass is considered as a function of n-valued graviton quanta. To develop this concept we begin in a cold region of “empty space” comprised of only microscopic gravitons oscillating at angular frequency ω. From opposite directions enters a pair of stray protons. Upon colliding, heat and energy are released. Customarily, this phase and what follows afterward would be described by Quantum Chromodynamics (QCD). Instead, we argue for an intermediary step. One in which neighboring gravitons absorb discrete amounts of plane-wave energy. Captured by the graviton, the planewave becomes a standing wave, whereupon its electromagnetic energy densities are converted into gravitational quanta. Immediately thereafter an elementary particle is formed and emitted, having both mass and spin. From absorption to conversion to emission occurs in less than 3.7 × 10−16 s. During this basic unit of hybrid time, general relativity and quantum physics unite into a common set of physical laws. As additional stray protons collide the process continues. Over eons, vast regions of spacetime become populated with low-mass particles. These we recognize to be dark matter by its effects on large scale structures in the universe. Its counterpart, dark energy, arises when the conversion of gravitational quanta to particle emission is interrupted. This causes the gravitational quanta to be ejected. It is recognized by its large scale effects on the universe. 展开更多
关键词 Dark Matter and Energy Gravitational Quanta Graviton Standing Wave Schwarzschild Metric general relativity Quantum Physics Unified Field Theory Blackholes
下载PDF
A Novel Derivation of Black Hole Entropy in all Dimensions from Truly Point Mass Sources
19
作者 Carlos Castro Perelman 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第3期1017-1028,共12页
It is explicitly shown how the Schwarzschild Black Hole Entropy (in all dimensions) emerges from truly point mass sources at r=0due to a non-vanishing scalar curvature involving the Dirac delta distribution. In order ... It is explicitly shown how the Schwarzschild Black Hole Entropy (in all dimensions) emerges from truly point mass sources at r=0due to a non-vanishing scalar curvature involving the Dirac delta distribution. In order to achieve this, one is required to extend the domain of r to negative values −∞≤r≤+∞. It is the density and anisotropic pressure components associated with the point mass delta function source at the origin r=0which furnish the Schwarzschild black hole entropy in all dimensions D≥4after evaluating the Euclidean Einstein-Hilbert action. Two of the most salient results are i) that the observed spacetime dimension D=4is precisely singled out from all the other dimensions when the strong and weak energy conditions are met, and ii) the point mass source described in this work is not the result of a spherically symmetric gravitational collapse of a star as described by the Oppenheimer-Snyder model because we are not neglecting the pressure. As usual, it is required to take the inverse Hawking temperature βHas the length of the circle Sβ1obtained from a compactification of the Euclidean time in thermal field theory which results after a Wick rotation, it=τ, to imaginary time. This approach can be generalized to the Reissner-Nordstrom and Kerr-Newman metrics. The physical implications of this finding warrant further investigation since it suggests a profound connection between the notion of gravitational entropy and spacetime singularities. 展开更多
关键词 general relativity Black Holes ENTROPY Strings
下载PDF
Why the Central Monster in M87 Should Be a Massive DEO Rather than a SMBH?
20
作者 Ahmad A. Hujeirat Mauritz Wicker 《Journal of Modern Physics》 2024年第5期537-549,共13页
In this paper, we show that massive envelopes made of highly compressed normal matter surrounding dark objects (DEOs) can curve the surrounding spacetime and make the systems observationally indistinguishable from the... In this paper, we show that massive envelopes made of highly compressed normal matter surrounding dark objects (DEOs) can curve the surrounding spacetime and make the systems observationally indistinguishable from their massive black hole counterparts. DEOs are new astrophysical objects that are made up of entropy-free incompressible supranuclear dense superfluid (SuSu-matter), embedded in flat spacetimes and invisible to outside observers, practically trapped in false vacua. Based on highly accurate numerical modelling of the internal structures of pulsars and massive neutron stars, and in combination with using a large variety of EOSs, we show that the mass range of DEOs is practically unbounded from above: it spans those of massive neutron stars, stellar and even supermassive black holes: thanks to the universal maximum density of normal matter, , beyond which normal matter converts into SuSu-matter. We apply the scenario to the Crab and Vela pulsars, the massive magnetar PSR J0740 6620, the presumably massive NS formed in GW170817, and the SMBHs in Sgr A* and M87*. Our numerical results also reveal that DEO-Envelope systems not only mimic massive BHs nicely but also indicate that massive DEOs can hide vast amounts of matter capable of turning our universe into a SuSu-matter-dominated one, essentially trapped in false vacua. 展开更多
关键词 general relativity Big Bang Black Holes QSOS Neutron Stars QCD Condensed Matter INCOMPRESSIBILITY SUPERFLUIDITY Super-Conductivity
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部