The Relative Pollen Productivities(RPPs)of common steppe species are estimated using Extended R-value(ERV)model based on pollen analysis and vegetation survey of 30 surface soil samples from typical steppe area of nor...The Relative Pollen Productivities(RPPs)of common steppe species are estimated using Extended R-value(ERV)model based on pollen analysis and vegetation survey of 30 surface soil samples from typical steppe area of northern China.Artemisia,Chenopodiaceae,Poaceae,Cyperaceae,and Asteraceae are the dominant pollen types in pollen assemblages,reflecting the typical steppe communities well.The five dominant pollen types and six common types(Thalictrum,Iridaceae,Potentilla,Ephedra,Brassicaceae,and Ulmus)have strong wind transport abilities;the estimated Relevant Source Area of Pollen(RSAP)is ca.1000 m when the sediment basin radius is set at 0.5 m.Ulmus,Artemisia,Brassicaceae,Chenopodiaceae,and Thalictrum have relative high RPPs;Poaceae,Cyperaceae,Potentilla,and Ephedra pollen have moderate RPPs;Asteraceae and Iridaceae have low RPPs.The reliability test of RPPs revealed that most of the RPPs are reliable in past vegetation reconstruction.However,the RPPs of Asteraceae and Iridaceae are obviously underestimated,and those of Poaceae,Chenopodiaceae,and Ephedra are either slightly underestimated or slightly overestimated,suggesting that those RPPs should be considered with caution.These RPPs were applied to estimating plant abundances for two fossil pollen spectra(from the Lake Bayanchagan and Lake Haoluku)covering the Holocene in typical steppe area,using the"Regional Estimates of Vegetation Abundance from Large Sites"(REVEALS)model.The RPPs-based vegetation reconstruction revealed that meadow-steppe dominated by Poaceae,Cyperaceae,and Artemisia plants flourished in this area before 6500–5600 cal yr BP,and then was replaced by present typical steppe.展开更多
In this article, highly sensitive and low confinement loss enriching micro structured photonic crystal fiber (PCF) has been suggested as an optical sensor. The proposed PCF is porous cored hexagonal (P-HPCF) where...In this article, highly sensitive and low confinement loss enriching micro structured photonic crystal fiber (PCF) has been suggested as an optical sensor. The proposed PCF is porous cored hexagonal (P-HPCF) where cladding contains five layers with circular air holes and core vicinity is formed by two layered elliptical air holes. Two fundamental propagation characteristics such as the relative sensitivity and confinement loss of the proposed P-HPCF have been numerically scrutinized by the full vectorial finite element method (FEM) simulation procedure. The optimized values are modified with different geometrical parameters like diameters of circular or elliptical air holes, pitches of the core, and cladding region over a spacious assortment of wavelength from 0.8 ktm to 1.8 -m. All pretending results exhibit that the relative sensitivity is enlarged according to decrement of wavelength of the transmission band (O+E+S+C+L+U). In addition, all useable liquids reveal the maximum sensitivity of 57.00%, 57.18%, and 57.27% for n=1.33, 1.354, and 1.366 respectively by lower band. Moreover, effective area, nonlinear coefficient, frequency, propagation constant, total electric energy, total magnetic energy, and wave number in free space of the proposed P-HPCF have been reported recently.展开更多
The sound ray tracing method can achieve higher accuracy in determining depths and plan positions with multibeam echo sounding system. In data processing, actual sound speed profile must be used in the method. However...The sound ray tracing method can achieve higher accuracy in determining depths and plan positions with multibeam echo sounding system. In data processing, actual sound speed profile must be used in the method. However, the method is too complicated. In order to overcome the shortcoming, this paper presents a new method, the position correction method. Two situations are considered in the new method, namely, change of sound velocity keeps constant gradient in whole water column (including N layers) or in different water layer.展开更多
Tuberculosis is one of the most contagious and lethal illnesses in the world,according to the World Health Organization.Tuberculosis had the leading mortality rate as a result of a single infection,ranking above HIV/A...Tuberculosis is one of the most contagious and lethal illnesses in the world,according to the World Health Organization.Tuberculosis had the leading mortality rate as a result of a single infection,ranking above HIV/AIDS.Early detection is an essential factor in patient treatment and can improve the survival rate.Detection methods should have high mobility,high accuracy,fast detection,and low losses.This work presents a novel biomedical photonic crystal fiber sensor,which can accurately detect and distinguish between the different types of tuberculosis bacteria.The designed sensor detects these types with high relative sensitivity and negligible losses compared to other photonic crystal fiber-based biomedical sensors.The proposed sensor exhibits a relative sensitivity of 90.6%,an effective area of 4.342×10^(-8)m^(2),with a negligible confinement loss of 3.13×10^(-9)cm^(-1),a remarkably low effective material loss of 0.0132cm-f,and a numerical aperture of 0.3462.The proposed sensor is capable of operating in the terahertz regimes over a wide range(1 THz-2.4 THz).An abbreviated review of non-optical detection techniques is also presented.An in-depth comparison between this work and recent related photonic crystal fiber-based literature is drawn to validate the efficacy and authenticity of the proposed design.展开更多
Background: Tectono grandis (teak) is one of the most important tropical timber species occurring naturally in India. Appropriate growth models, based on advanced modeling techniques, are not available but are nece...Background: Tectono grandis (teak) is one of the most important tropical timber species occurring naturally in India. Appropriate growth models, based on advanced modeling techniques, are not available but are necessary for the successful management of teak stands in the country. Long-term forest planning requires mathematical models and the principles of Dynamical System Theory provide a solid foundation for these. Methods: The state-space approach makes it possible to accommodate disturbances and avarying environment. In this paper, an attempt has been made to develop a dynamic growth model based on the limited data, consisting of three annual measurements, collected from 22 teak sample plots in Karnataka, Southern India. Results: A biologically consistent whole-stand growth model has been presented which uses the state-space approach for modelling rates of change of three state-variables viz., dominant height, stems per hectare and stand basal area. Moreover, the model includes a stand volume equation as an output function to estimate this variable at any point in time. Transition functions were fitted separately and simultaneously. Moreover, a continuous autoregressive error structure is also included in the modelling process. For fitting volume equation, generalized method of moments was used to get efficient parameter estimates under heteroscedastic conditions. Conclusions: A simple model containing few free parameters performed well and is particularly well suited to situations where available data is scarce.展开更多
In this paper, a hexagonal shape photonic crystal fiber (H-PCF) has been proposed as a gas sensor of which both micro-structured core and cladding are organized by circular air cavities. The reported H-PCF has a sin...In this paper, a hexagonal shape photonic crystal fiber (H-PCF) has been proposed as a gas sensor of which both micro-structured core and cladding are organized by circular air cavities. The reported H-PCF has a single layer circular core which is surrounded by a five-layer hexagonal cladding. The overall pretending process of the H-PCF is completed by using a full vectorial finite element method (FEM) with perfectly matched layer (PML) boundary condition. All geometrical parameters like diameters and pitches of both core and cladding regions have fluctuated with an optimized structure. After completing the numerical analysis, it is clearly visualized that the proposed H-PCF exhibits high sensitivity with low confinement loss. The investigated results reveal the relative sensitivity of 56.65% and confinement loss of 2.31×10^-5 dB/m at the 1.33%tm wavelength. Moreover, effective area, nonlinearity, and V-parameter of the suggested PCF are also briefly described.展开更多
Pre-drying treatments are frequently employed to preserve fruit quality.The objective of this research was to monitor colour changes of banana during drying by laser backscattering and to determine the influence of th...Pre-drying treatments are frequently employed to preserve fruit quality.The objective of this research was to monitor colour changes of banana during drying by laser backscattering and to determine the influence of the fruit discolouration on the light distribution into banana tissue.Moreover,to examine the influence of drying on the laser backscatter,the relationship between moisture content and relative laser area of banana slices was analyzed with different degrees of colour degradation.The experiments were conducted at drying air temperature of 63℃with various pre-treatments like chilling,soaking in ascorbic/citric acid and dipping in distilled water.An untreated sample was used as a control.A laser diode emitting at 670 nm with 3 mW power was used as light source.The backscattering relative laser area was used as an indicator for the light absorption into the tissue.The high result achieved on coefficient of determination R^(2)(>0.93)confirmed linear relationship between relative laser area and moisture content.Treatment with ascorbic acid gave the best prediction of the moisture content with the standard error of 5.7 and 8.8 for the estimated intercept and slope.The results showed a significant difference of lightness(L*values)during drying according to the different treatments.As a result,colour degradation did not have a significant influence on the absorption of light at 670 nm wavelength.展开更多
Automated segmentation of white matter (WM) and gray matter (GM) is a very important task for detecting multiple diseases. The paper proposed a simple method for WM and GM extraction form magnetic resonance imaging (M...Automated segmentation of white matter (WM) and gray matter (GM) is a very important task for detecting multiple diseases. The paper proposed a simple method for WM and GM extraction form magnetic resonance imaging (MRI) of brain. The proposed methods based on binarization, wavelet decomposition, and convexhull produce very effective results in the context of visual inspection and as well as quantifiably. It tested on three different (Transvers, Sagittal, Coronal) types of MRI of brain image and the validation of experiment indicate accurate detection and segmentation of the interesting structures or particular region of MRI of brain image.展开更多
This paper presents seasonal regression models of demand to investigate electricity consumption characteristics. Electricity consumption in commercial areas in Japan is analyzed by using meteorological variables, name...This paper presents seasonal regression models of demand to investigate electricity consumption characteristics. Electricity consumption in commercial areas in Japan is analyzed by using meteorological variables, namely temperature and relative humidity. A dummy variable for holidays is also considered. We have developed models for two levels of period to analyze demand characteristics, that is, half year models and seasonal models. Some options for each model are calculated and validated by statistical tests to obtain better models. As results, half year and seasonal models present explicit information about how the variables affect the demand differently for each period. These specific information help in analyzing characteristics of studied commercial demand.展开更多
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA05120202)the National Natural Science Foundation of China(Grant Nos.41071132,41371215)+1 种基金Science and Technology Department of Hebei Province(Grant No.13277611D)the Foundation of Key Discipline of Hebei Province and Hebei Key Laboratory of Environmental Change and Ecological Construction
文摘The Relative Pollen Productivities(RPPs)of common steppe species are estimated using Extended R-value(ERV)model based on pollen analysis and vegetation survey of 30 surface soil samples from typical steppe area of northern China.Artemisia,Chenopodiaceae,Poaceae,Cyperaceae,and Asteraceae are the dominant pollen types in pollen assemblages,reflecting the typical steppe communities well.The five dominant pollen types and six common types(Thalictrum,Iridaceae,Potentilla,Ephedra,Brassicaceae,and Ulmus)have strong wind transport abilities;the estimated Relevant Source Area of Pollen(RSAP)is ca.1000 m when the sediment basin radius is set at 0.5 m.Ulmus,Artemisia,Brassicaceae,Chenopodiaceae,and Thalictrum have relative high RPPs;Poaceae,Cyperaceae,Potentilla,and Ephedra pollen have moderate RPPs;Asteraceae and Iridaceae have low RPPs.The reliability test of RPPs revealed that most of the RPPs are reliable in past vegetation reconstruction.However,the RPPs of Asteraceae and Iridaceae are obviously underestimated,and those of Poaceae,Chenopodiaceae,and Ephedra are either slightly underestimated or slightly overestimated,suggesting that those RPPs should be considered with caution.These RPPs were applied to estimating plant abundances for two fossil pollen spectra(from the Lake Bayanchagan and Lake Haoluku)covering the Holocene in typical steppe area,using the"Regional Estimates of Vegetation Abundance from Large Sites"(REVEALS)model.The RPPs-based vegetation reconstruction revealed that meadow-steppe dominated by Poaceae,Cyperaceae,and Artemisia plants flourished in this area before 6500–5600 cal yr BP,and then was replaced by present typical steppe.
文摘In this article, highly sensitive and low confinement loss enriching micro structured photonic crystal fiber (PCF) has been suggested as an optical sensor. The proposed PCF is porous cored hexagonal (P-HPCF) where cladding contains five layers with circular air holes and core vicinity is formed by two layered elliptical air holes. Two fundamental propagation characteristics such as the relative sensitivity and confinement loss of the proposed P-HPCF have been numerically scrutinized by the full vectorial finite element method (FEM) simulation procedure. The optimized values are modified with different geometrical parameters like diameters of circular or elliptical air holes, pitches of the core, and cladding region over a spacious assortment of wavelength from 0.8 ktm to 1.8 -m. All pretending results exhibit that the relative sensitivity is enlarged according to decrement of wavelength of the transmission band (O+E+S+C+L+U). In addition, all useable liquids reveal the maximum sensitivity of 57.00%, 57.18%, and 57.27% for n=1.33, 1.354, and 1.366 respectively by lower band. Moreover, effective area, nonlinear coefficient, frequency, propagation constant, total electric energy, total magnetic energy, and wave number in free space of the proposed P-HPCF have been reported recently.
文摘The sound ray tracing method can achieve higher accuracy in determining depths and plan positions with multibeam echo sounding system. In data processing, actual sound speed profile must be used in the method. However, the method is too complicated. In order to overcome the shortcoming, this paper presents a new method, the position correction method. Two situations are considered in the new method, namely, change of sound velocity keeps constant gradient in whole water column (including N layers) or in different water layer.
文摘Tuberculosis is one of the most contagious and lethal illnesses in the world,according to the World Health Organization.Tuberculosis had the leading mortality rate as a result of a single infection,ranking above HIV/AIDS.Early detection is an essential factor in patient treatment and can improve the survival rate.Detection methods should have high mobility,high accuracy,fast detection,and low losses.This work presents a novel biomedical photonic crystal fiber sensor,which can accurately detect and distinguish between the different types of tuberculosis bacteria.The designed sensor detects these types with high relative sensitivity and negligible losses compared to other photonic crystal fiber-based biomedical sensors.The proposed sensor exhibits a relative sensitivity of 90.6%,an effective area of 4.342×10^(-8)m^(2),with a negligible confinement loss of 3.13×10^(-9)cm^(-1),a remarkably low effective material loss of 0.0132cm-f,and a numerical aperture of 0.3462.The proposed sensor is capable of operating in the terahertz regimes over a wide range(1 THz-2.4 THz).An abbreviated review of non-optical detection techniques is also presented.An in-depth comparison between this work and recent related photonic crystal fiber-based literature is drawn to validate the efficacy and authenticity of the proposed design.
文摘Background: Tectono grandis (teak) is one of the most important tropical timber species occurring naturally in India. Appropriate growth models, based on advanced modeling techniques, are not available but are necessary for the successful management of teak stands in the country. Long-term forest planning requires mathematical models and the principles of Dynamical System Theory provide a solid foundation for these. Methods: The state-space approach makes it possible to accommodate disturbances and avarying environment. In this paper, an attempt has been made to develop a dynamic growth model based on the limited data, consisting of three annual measurements, collected from 22 teak sample plots in Karnataka, Southern India. Results: A biologically consistent whole-stand growth model has been presented which uses the state-space approach for modelling rates of change of three state-variables viz., dominant height, stems per hectare and stand basal area. Moreover, the model includes a stand volume equation as an output function to estimate this variable at any point in time. Transition functions were fitted separately and simultaneously. Moreover, a continuous autoregressive error structure is also included in the modelling process. For fitting volume equation, generalized method of moments was used to get efficient parameter estimates under heteroscedastic conditions. Conclusions: A simple model containing few free parameters performed well and is particularly well suited to situations where available data is scarce.
文摘In this paper, a hexagonal shape photonic crystal fiber (H-PCF) has been proposed as a gas sensor of which both micro-structured core and cladding are organized by circular air cavities. The reported H-PCF has a single layer circular core which is surrounded by a five-layer hexagonal cladding. The overall pretending process of the H-PCF is completed by using a full vectorial finite element method (FEM) with perfectly matched layer (PML) boundary condition. All geometrical parameters like diameters and pitches of both core and cladding regions have fluctuated with an optimized structure. After completing the numerical analysis, it is clearly visualized that the proposed H-PCF exhibits high sensitivity with low confinement loss. The investigated results reveal the relative sensitivity of 56.65% and confinement loss of 2.31×10^-5 dB/m at the 1.33%tm wavelength. Moreover, effective area, nonlinearity, and V-parameter of the suggested PCF are also briefly described.
文摘Pre-drying treatments are frequently employed to preserve fruit quality.The objective of this research was to monitor colour changes of banana during drying by laser backscattering and to determine the influence of the fruit discolouration on the light distribution into banana tissue.Moreover,to examine the influence of drying on the laser backscatter,the relationship between moisture content and relative laser area of banana slices was analyzed with different degrees of colour degradation.The experiments were conducted at drying air temperature of 63℃with various pre-treatments like chilling,soaking in ascorbic/citric acid and dipping in distilled water.An untreated sample was used as a control.A laser diode emitting at 670 nm with 3 mW power was used as light source.The backscattering relative laser area was used as an indicator for the light absorption into the tissue.The high result achieved on coefficient of determination R^(2)(>0.93)confirmed linear relationship between relative laser area and moisture content.Treatment with ascorbic acid gave the best prediction of the moisture content with the standard error of 5.7 and 8.8 for the estimated intercept and slope.The results showed a significant difference of lightness(L*values)during drying according to the different treatments.As a result,colour degradation did not have a significant influence on the absorption of light at 670 nm wavelength.
文摘Automated segmentation of white matter (WM) and gray matter (GM) is a very important task for detecting multiple diseases. The paper proposed a simple method for WM and GM extraction form magnetic resonance imaging (MRI) of brain. The proposed methods based on binarization, wavelet decomposition, and convexhull produce very effective results in the context of visual inspection and as well as quantifiably. It tested on three different (Transvers, Sagittal, Coronal) types of MRI of brain image and the validation of experiment indicate accurate detection and segmentation of the interesting structures or particular region of MRI of brain image.
文摘This paper presents seasonal regression models of demand to investigate electricity consumption characteristics. Electricity consumption in commercial areas in Japan is analyzed by using meteorological variables, namely temperature and relative humidity. A dummy variable for holidays is also considered. We have developed models for two levels of period to analyze demand characteristics, that is, half year models and seasonal models. Some options for each model are calculated and validated by statistical tests to obtain better models. As results, half year and seasonal models present explicit information about how the variables affect the demand differently for each period. These specific information help in analyzing characteristics of studied commercial demand.