针对直流调速系统中滑模控制容易引起稳态误差的问题,设计了一种改进型分数阶滑模控制(Fractional order sliding mode control,FOSMC)。通过对直流调速系统的一阶数学模型求导,建立了系统的二阶数学模型,将分数阶微积分理论引入到滑模...针对直流调速系统中滑模控制容易引起稳态误差的问题,设计了一种改进型分数阶滑模控制(Fractional order sliding mode control,FOSMC)。通过对直流调速系统的一阶数学模型求导,建立了系统的二阶数学模型,将分数阶微积分理论引入到滑模切换函数中,结合指数趋近律和系统二阶数学模型,设计了分数阶滑模控制器,并在控制器的输出端串联积分环节,得到系统的控制信号,最后利用李雅普诺夫稳定性理论和分数阶微积分理论进行了稳定性分析。仿真和实验表明,本文方法不仅能够有效消除系统受干扰时产生的稳态误差,而且可以削弱系统抖振现象。展开更多
The article adopts the quarterly data of the monetary and macroeconomics variables from 1978~1999, applies the asymmetrical information game analysis, the regression and cointegration error-correction model, to inves...The article adopts the quarterly data of the monetary and macroeconomics variables from 1978~1999, applies the asymmetrical information game analysis, the regression and cointegration error-correction model, to investigate on the decision-making mechanism of money supply and money regulation project. It suggests the regulation process which central bank controls with instruments of the monetary policy and the mode detail of its operation.展开更多
文摘针对直流调速系统中滑模控制容易引起稳态误差的问题,设计了一种改进型分数阶滑模控制(Fractional order sliding mode control,FOSMC)。通过对直流调速系统的一阶数学模型求导,建立了系统的二阶数学模型,将分数阶微积分理论引入到滑模切换函数中,结合指数趋近律和系统二阶数学模型,设计了分数阶滑模控制器,并在控制器的输出端串联积分环节,得到系统的控制信号,最后利用李雅普诺夫稳定性理论和分数阶微积分理论进行了稳定性分析。仿真和实验表明,本文方法不仅能够有效消除系统受干扰时产生的稳态误差,而且可以削弱系统抖振现象。
基金This work is supported by National Natural Science Foundation of China (No.70 12 10 0 1)
文摘The article adopts the quarterly data of the monetary and macroeconomics variables from 1978~1999, applies the asymmetrical information game analysis, the regression and cointegration error-correction model, to investigate on the decision-making mechanism of money supply and money regulation project. It suggests the regulation process which central bank controls with instruments of the monetary policy and the mode detail of its operation.