A long-term simulation for the period 1990–2010 is conducted with the latest version of the International Centre for Theoretical Physics' Regional Climate Model(RegCM4), driven by ERA-Interim boundary conditions a...A long-term simulation for the period 1990–2010 is conducted with the latest version of the International Centre for Theoretical Physics' Regional Climate Model(RegCM4), driven by ERA-Interim boundary conditions at a grid spacing of 25 km. The Community Land Model(CLM) is used to describe land surface processes, with updates in the surface parameters,including the land cover and surface emissivity. The simulation is compared against observations to evaluate the model performance in reproducing the present day climatology and interannual variability over the 10 main river basins in China,with focus on surface air temperature and precipitation. Temperature and precipitation from the ERA-Interim reanalysis are also considered in the model assessment. Results show that the model reproduces the present day climatology over China and its main river basins, with better performances in June–July–August compared to December–January–February(DJF).In DJF, we find a warm bias at high latitudes, underestimated precipitation in the south, and overestimated precipitation in the north. The model in general captures the observed interannual variability, with greater skill for temperature. We also find an underestimation of heavy precipitation events in eastern China, and an underestimation of consecutive dry days in northern China and the Tibetan Plateau. Similar biases for both mean climatology and extremes are found in the ERA-Interim reanalysis, indicating the difficulties for climate models in simulating extreme monsoon climate events over East Asia.展开更多
in the latest version of the international Centre for Theoretical Physics' regional climate model, RegCM4, CLM was introduced as a new land surface scheme. The performance over China of RegCM4-CLM with different conv...in the latest version of the international Centre for Theoretical Physics' regional climate model, RegCM4, CLM was introduced as a new land surface scheme. The performance over China of RegCM4-CLM with different convection schemes is analyzed in this study, based on a series of short- term experiments.The model is driven by ERA-Interim data at a grid spacing of 25 km.The convection schemes employed are: Emanuel; Grell; Emanuel over land and Grell over ocean; Grell over land and Emanuel over ocean; and Tiedtke. The simulated mean surface air temperature and precipitation in December-February-January and June-July-August are compared against observation. In general, better performance of Emanuel is found both for temperature and precipitation, and in both seasons. Thus, the model physics of CLM and Emanuel for the land surface processes and convection, respectively, are recommended for further application of RegCM4 over the China region. The de^ciencies that remain in the model arealso outlined and discussed.展开更多
Future changes in tropical cyclone(TC)activity over the western North Pacific(WNP)under the representative concentration pathway RCP4.5 are investigated based on a set of 21 st century climate change simulations over ...Future changes in tropical cyclone(TC)activity over the western North Pacific(WNP)under the representative concentration pathway RCP4.5 are investigated based on a set of 21 st century climate change simulations over East Asia with the regional climate model RegCM4 driven by five global models.The RegCM4 reproduces the major features of the observed TC activity over the region in the present-day period of 1986-2005,although with the underestimation of the number of TC genesis and intensity.A low number of TCs making landfall over China is also simulated.By the end of the 21st century(2079-98),the annual mean frequency of TC genesis and occurrence is projected to increase over the WNP by16%and 10%,respectively.The increase in frequency of TC occurrence is in good agreement among the simulations,with the largest increase over the ocean surrounding Taiwan Island and to the south of Japan.The TCs tend to be stronger in the future compared to the present-day period of 1986-2005,with a large increase in the frequency of strong TCs.In addition,more TCs landings are projected over most of the China coast,with an increase of~18%over the whole Chinese territory.展开更多
运用区域气候模式RegCM4.0(Regional Climate Model Verson 4.0)耦合入一个化学过程,对硫酸盐、黑碳、有机碳这3种人为气溶胶的时空分布特征和直接辐射效应进行了数值模拟,进而研究了气溶胶对南亚冬季风的影响。结果表明:光学厚度和地...运用区域气候模式RegCM4.0(Regional Climate Model Verson 4.0)耦合入一个化学过程,对硫酸盐、黑碳、有机碳这3种人为气溶胶的时空分布特征和直接辐射效应进行了数值模拟,进而研究了气溶胶对南亚冬季风的影响。结果表明:光学厚度和地表短波辐射强迫的时空变化可能主要受硫酸盐气溶胶的影响。在南亚夏季风向冬季风转换时期和南亚冬季风盛行时期,大气层顶和地表的负短波辐射强迫分布与气溶胶分布基本一致,地表辐射强迫强度绝对值比大气层顶辐射强迫强度绝对值大得多。相关分析和合成分析表明:在南亚夏季风向冬季风转换时期和南亚冬季风盛行时期,南亚人为气溶胶主要分布区中的气溶胶柱浓度含量与南亚冬季风的建立和强度有反相关关系。这与气溶胶吸收太阳辐射,从而引起气温和位势高度的变化有关。展开更多
基金jointly supported by the National Key Research and Development Program of China(Grant No.2016YFA0600704)the National Natural Science Foundation(Grant No.41375104)the Climate Change Specific Fund of China(Grant Nos.CCSF201626 and CCSF201509)
文摘A long-term simulation for the period 1990–2010 is conducted with the latest version of the International Centre for Theoretical Physics' Regional Climate Model(RegCM4), driven by ERA-Interim boundary conditions at a grid spacing of 25 km. The Community Land Model(CLM) is used to describe land surface processes, with updates in the surface parameters,including the land cover and surface emissivity. The simulation is compared against observations to evaluate the model performance in reproducing the present day climatology and interannual variability over the 10 main river basins in China,with focus on surface air temperature and precipitation. Temperature and precipitation from the ERA-Interim reanalysis are also considered in the model assessment. Results show that the model reproduces the present day climatology over China and its main river basins, with better performances in June–July–August compared to December–January–February(DJF).In DJF, we find a warm bias at high latitudes, underestimated precipitation in the south, and overestimated precipitation in the north. The model in general captures the observed interannual variability, with greater skill for temperature. We also find an underestimation of heavy precipitation events in eastern China, and an underestimation of consecutive dry days in northern China and the Tibetan Plateau. Similar biases for both mean climatology and extremes are found in the ERA-Interim reanalysis, indicating the difficulties for climate models in simulating extreme monsoon climate events over East Asia.
基金supported by the National Natural Science Foundation of China[41375104]the Climate Change Specific Fund of China[CCSF201509]
文摘in the latest version of the international Centre for Theoretical Physics' regional climate model, RegCM4, CLM was introduced as a new land surface scheme. The performance over China of RegCM4-CLM with different convection schemes is analyzed in this study, based on a series of short- term experiments.The model is driven by ERA-Interim data at a grid spacing of 25 km.The convection schemes employed are: Emanuel; Grell; Emanuel over land and Grell over ocean; Grell over land and Emanuel over ocean; and Tiedtke. The simulated mean surface air temperature and precipitation in December-February-January and June-July-August are compared against observation. In general, better performance of Emanuel is found both for temperature and precipitation, and in both seasons. Thus, the model physics of CLM and Emanuel for the land surface processes and convection, respectively, are recommended for further application of RegCM4 over the China region. The de^ciencies that remain in the model arealso outlined and discussed.
基金jointly supported by the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA20060401)the National Natural Science Foundation of China(Grant No.41675103)the Science and Technology Program of Yunnan(Grant No.2018BC007)。
文摘Future changes in tropical cyclone(TC)activity over the western North Pacific(WNP)under the representative concentration pathway RCP4.5 are investigated based on a set of 21 st century climate change simulations over East Asia with the regional climate model RegCM4 driven by five global models.The RegCM4 reproduces the major features of the observed TC activity over the region in the present-day period of 1986-2005,although with the underestimation of the number of TC genesis and intensity.A low number of TCs making landfall over China is also simulated.By the end of the 21st century(2079-98),the annual mean frequency of TC genesis and occurrence is projected to increase over the WNP by16%and 10%,respectively.The increase in frequency of TC occurrence is in good agreement among the simulations,with the largest increase over the ocean surrounding Taiwan Island and to the south of Japan.The TCs tend to be stronger in the future compared to the present-day period of 1986-2005,with a large increase in the frequency of strong TCs.In addition,more TCs landings are projected over most of the China coast,with an increase of~18%over the whole Chinese territory.
文摘运用区域气候模式RegCM4.0(Regional Climate Model Verson 4.0)耦合入一个化学过程,对硫酸盐、黑碳、有机碳这3种人为气溶胶的时空分布特征和直接辐射效应进行了数值模拟,进而研究了气溶胶对南亚冬季风的影响。结果表明:光学厚度和地表短波辐射强迫的时空变化可能主要受硫酸盐气溶胶的影响。在南亚夏季风向冬季风转换时期和南亚冬季风盛行时期,大气层顶和地表的负短波辐射强迫分布与气溶胶分布基本一致,地表辐射强迫强度绝对值比大气层顶辐射强迫强度绝对值大得多。相关分析和合成分析表明:在南亚夏季风向冬季风转换时期和南亚冬季风盛行时期,南亚人为气溶胶主要分布区中的气溶胶柱浓度含量与南亚冬季风的建立和强度有反相关关系。这与气溶胶吸收太阳辐射,从而引起气温和位势高度的变化有关。