The influence of three different blowing conditions on the slag splashing process in a basic oxygen furnace for steelmaking is analyzed here using two-dimensional transient Computational Fluid Dynamics simulations. Fo...The influence of three different blowing conditions on the slag splashing process in a basic oxygen furnace for steelmaking is analyzed here using two-dimensional transient Computational Fluid Dynamics simulations. Four blowing conditions are considered in the computer runs: top blowing, combined blowing using just a bottom centered nozzle, combined blowing using two bottom lateral nozzles, and full combined blowing using the three top and the three bottom nozzles. Computer simulations show that full combined blowing provides greater slag splashing than conventional top blowing.展开更多
Physical properties of molten slag such as viscosity, density and surface tension have a significant influence on the slag splashing process in an oxygen steelmaking converter. Particularly, viscosity determines the s...Physical properties of molten slag such as viscosity, density and surface tension have a significant influence on the slag splashing process in an oxygen steelmaking converter. Particularly, viscosity determines the shear forces that rule droplets formation. Besides, stirring of the molten slag bath strongly depends on this property. In this work, the influence of viscosity on the efficiency of slag splashing is explored by means of transient Computational Fluid Dynamics simulations. Several values of viscosity are employed in the computer experiments. In order to quantify the splashing efficiency as function of slag viscosity, an average slag fraction on the converter walls is defined and calculated. CFD results are compared with those of an empirical expression, and at least qualitative agreement is found.展开更多
文摘The influence of three different blowing conditions on the slag splashing process in a basic oxygen furnace for steelmaking is analyzed here using two-dimensional transient Computational Fluid Dynamics simulations. Four blowing conditions are considered in the computer runs: top blowing, combined blowing using just a bottom centered nozzle, combined blowing using two bottom lateral nozzles, and full combined blowing using the three top and the three bottom nozzles. Computer simulations show that full combined blowing provides greater slag splashing than conventional top blowing.
文摘Physical properties of molten slag such as viscosity, density and surface tension have a significant influence on the slag splashing process in an oxygen steelmaking converter. Particularly, viscosity determines the shear forces that rule droplets formation. Besides, stirring of the molten slag bath strongly depends on this property. In this work, the influence of viscosity on the efficiency of slag splashing is explored by means of transient Computational Fluid Dynamics simulations. Several values of viscosity are employed in the computer experiments. In order to quantify the splashing efficiency as function of slag viscosity, an average slag fraction on the converter walls is defined and calculated. CFD results are compared with those of an empirical expression, and at least qualitative agreement is found.