In this study, the propagation of electromagnetic waves in one-dimensional plasma photonic crystals (PPCs), namely, superlattice structures consisting alternately of a homogeneous unmagnetized plasma and dielectric ...In this study, the propagation of electromagnetic waves in one-dimensional plasma photonic crystals (PPCs), namely, superlattice structures consisting alternately of a homogeneous unmagnetized plasma and dielectric material, is simulated numerically using the finite-difference time-domain (FDTD) algorithm. A perfectly matched layer (PML) absorbing technique is used in this simulation. The reflection and transmission coefficients of electromagnetic (EM) waves through PPCs are calculated. The characteristics of the photonic band gap (PBG) are discussed in terms of plasma density, dielectric constant ratios, number of periods, and introduced layer defect. These may provide some useful information for designing plasma photonic crystal devices.展开更多
The seismic reflection and transmission characteristics of a single layer sandwiched between two dissimilar poroelastic solids saturated with two immiscible viscous fluids are investigated. The sandwiched layer is mod...The seismic reflection and transmission characteristics of a single layer sandwiched between two dissimilar poroelastic solids saturated with two immiscible viscous fluids are investigated. The sandwiched layer is modeled as a porous solid with finite thickness. The propagation of waves is represented with potential functions. The displacements of particles in different phases of the aggregate are defined in terms of these potential functions. Due to the presence of viscosity in pore fluids, the reflected and transmitted waves are inhomogeneous in nature, i.e., with different directions of propagation and attenuation. The closed-form analytical expressions for reflection and transmission coefficients are derived theoretically for appropriate boundary conditions. These expressions are calculated as a non-singular system of linear algebraic equations and depend on the various parameters involved in this non-singular system. Hence,numerical examples are studied to determine the effects of various properties of the sandwich layer on reflection and transmission coefficients. The essential features of layer thickness, incident direction, wave frequency, liquidsaturation and capillary pressure of the porous layer on reflection and transmission coefficients are depicted graphically and discussed. The analysis shows that reflection and transmission coefficients are strongly associated with incident direction and various properties of the porous layer.展开更多
An analytic method is used to study the reflection and transmission coefficients of the double submerged rectangular blocks (DSRBs) in oblique waves. The scattering potentials are obtained by means of the eigenfunct...An analytic method is used to study the reflection and transmission coefficients of the double submerged rectangular blocks (DSRBs) in oblique waves. The scattering potentials are obtained by means of the eigenfunction expansion method, and expressions for the reflection and transmission coefficients are determined. The boundary element method is employed to verify the correctness of the present analytical method. The DSRBs have better performance than the single submerged rectangular block (SSRB) in certain cases. The reflection and transmission properties of the DSRBs are investigated for some specific cases, and the influences of the geometric parameters are also presented.展开更多
The wave propagation approach is presented to research the active vibration control of two-beam structures.Considering the continuity of the generalized displacement and the equilibrium of the generalized force at the...The wave propagation approach is presented to research the active vibration control of two-beam structures.Considering the continuity of the generalized displacement and the equilibrium of the generalized force at the discontinuity,the wave reflection and transmission coefficients are calculated.Wave control is applied somewhere upstream or downstream to two-beam structures.Vibrations of two coupled beams per unit disturbance are investigated.The results show that wave control is efficient,and the influence of the thickness ratio of two-beam structures on control location is discussed.展开更多
This work deals with the study of a plane periodic multilayer structure in which the elementary stack consists of two plates in contact: one in aluminum (AL) and the other one in polyethylene (PE). These isotropic mat...This work deals with the study of a plane periodic multilayer structure in which the elementary stack consists of two plates in contact: one in aluminum (AL) and the other one in polyethylene (PE). These isotropic materials, present a high acoustic impedance contrast. The attenuation of the longitudinal and transverse waves is taken into account in the polyethylene but neglected in the aluminum plate. The effect of different defects is analyzed. Firstly, we focus on the effect of the presence of grease inclusion in the polyethylene plate (considering the two plates of the elementary stack in perfect contact). Secondly, the effect of disbond simulated by the insertion of a thin Teflon layer between the interfaces of the two layers constituting the elementary stack of the multilayer structure is investigated. Finally, the effect of the stacking sequences of the multilayer is analyzed. In order to obtain the effective acoustic parameters of polyethylene layer, allowing to evaluate the reflection and transmission coefficients using the stiffness matrix method developed by Rokhlin <em>et</em> <em>al</em>., four homogenization models are analyzed, then the best one to our configuration is chosen. The comparison of the simulation results is carried out.展开更多
The problem of reflection and transmission of plane periodic waves incident on the interface between the loosely bonded elastic solid and micropolar porous cubic crystal half spaces is investigated. This is done by as...The problem of reflection and transmission of plane periodic waves incident on the interface between the loosely bonded elastic solid and micropolar porous cubic crystal half spaces is investigated. This is done by assuming that the interface behaves like a dislocation, which preserves the continuity of traction while allowing a finite amount of slip. Amplitude ratios of various reflected and transmitted waves have been depicted graphically. Some special cases of interest have been deduced from the present investigation.展开更多
基金supported by the Program for New Century Excellent Talents in University(No.NCET-05-0575)the Education Science Foundation of Jiangxi Province(No.Z-03510)
文摘In this study, the propagation of electromagnetic waves in one-dimensional plasma photonic crystals (PPCs), namely, superlattice structures consisting alternately of a homogeneous unmagnetized plasma and dielectric material, is simulated numerically using the finite-difference time-domain (FDTD) algorithm. A perfectly matched layer (PML) absorbing technique is used in this simulation. The reflection and transmission coefficients of electromagnetic (EM) waves through PPCs are calculated. The characteristics of the photonic band gap (PBG) are discussed in terms of plasma density, dielectric constant ratios, number of periods, and introduced layer defect. These may provide some useful information for designing plasma photonic crystal devices.
文摘The seismic reflection and transmission characteristics of a single layer sandwiched between two dissimilar poroelastic solids saturated with two immiscible viscous fluids are investigated. The sandwiched layer is modeled as a porous solid with finite thickness. The propagation of waves is represented with potential functions. The displacements of particles in different phases of the aggregate are defined in terms of these potential functions. Due to the presence of viscosity in pore fluids, the reflected and transmitted waves are inhomogeneous in nature, i.e., with different directions of propagation and attenuation. The closed-form analytical expressions for reflection and transmission coefficients are derived theoretically for appropriate boundary conditions. These expressions are calculated as a non-singular system of linear algebraic equations and depend on the various parameters involved in this non-singular system. Hence,numerical examples are studied to determine the effects of various properties of the sandwich layer on reflection and transmission coefficients. The essential features of layer thickness, incident direction, wave frequency, liquidsaturation and capillary pressure of the porous layer on reflection and transmission coefficients are depicted graphically and discussed. The analysis shows that reflection and transmission coefficients are strongly associated with incident direction and various properties of the porous layer.
基金This proiect was supported by the Natural Science Foundation of Guangdong Province under contract No 04000377.
文摘An analytic method is used to study the reflection and transmission coefficients of the double submerged rectangular blocks (DSRBs) in oblique waves. The scattering potentials are obtained by means of the eigenfunction expansion method, and expressions for the reflection and transmission coefficients are determined. The boundary element method is employed to verify the correctness of the present analytical method. The DSRBs have better performance than the single submerged rectangular block (SSRB) in certain cases. The reflection and transmission properties of the DSRBs are investigated for some specific cases, and the influences of the geometric parameters are also presented.
基金Supported by the National Natural Science Foundation of China(11102047,11002037)the Special Funds of Central Colleges Basic Scientific Research Operating Expenses(HEUCF20111139)the Fundamental Research Foundation of Harbin Engineering University(002110260746)
文摘The wave propagation approach is presented to research the active vibration control of two-beam structures.Considering the continuity of the generalized displacement and the equilibrium of the generalized force at the discontinuity,the wave reflection and transmission coefficients are calculated.Wave control is applied somewhere upstream or downstream to two-beam structures.Vibrations of two coupled beams per unit disturbance are investigated.The results show that wave control is efficient,and the influence of the thickness ratio of two-beam structures on control location is discussed.
文摘This work deals with the study of a plane periodic multilayer structure in which the elementary stack consists of two plates in contact: one in aluminum (AL) and the other one in polyethylene (PE). These isotropic materials, present a high acoustic impedance contrast. The attenuation of the longitudinal and transverse waves is taken into account in the polyethylene but neglected in the aluminum plate. The effect of different defects is analyzed. Firstly, we focus on the effect of the presence of grease inclusion in the polyethylene plate (considering the two plates of the elementary stack in perfect contact). Secondly, the effect of disbond simulated by the insertion of a thin Teflon layer between the interfaces of the two layers constituting the elementary stack of the multilayer structure is investigated. Finally, the effect of the stacking sequences of the multilayer is analyzed. In order to obtain the effective acoustic parameters of polyethylene layer, allowing to evaluate the reflection and transmission coefficients using the stiffness matrix method developed by Rokhlin <em>et</em> <em>al</em>., four homogenization models are analyzed, then the best one to our configuration is chosen. The comparison of the simulation results is carried out.
文摘The problem of reflection and transmission of plane periodic waves incident on the interface between the loosely bonded elastic solid and micropolar porous cubic crystal half spaces is investigated. This is done by assuming that the interface behaves like a dislocation, which preserves the continuity of traction while allowing a finite amount of slip. Amplitude ratios of various reflected and transmitted waves have been depicted graphically. Some special cases of interest have been deduced from the present investigation.