The heat transfer analysis was performed for an industrial ladle furnace (LF) with a capacity of 55-57 t in Turkey. The heat losses by conduction, convection and radiation from outer and bottom surfaces, top and ele...The heat transfer analysis was performed for an industrial ladle furnace (LF) with a capacity of 55-57 t in Turkey. The heat losses by conduction, convection and radiation from outer and bottom surfaces, top and electrodes of LF were determined in detail. Finally, some suggestions about decreasing heat losses were presented.展开更多
Controlling conditions for inclusion plasticization were calculated by FactSage, and the steel/slag reaction equilibration time was determined by pre-equilibrium experiments. Laboratory experiments with different top ...Controlling conditions for inclusion plasticization were calculated by FactSage, and the steel/slag reaction equilibration time was determined by pre-equilibrium experiments. Laboratory experiments with different top slags were carried out in 90 rain, and industrial tests were performed based on the results of calculation and laboratory experiments. Scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) were used to determine the morphology and composition of inclusions in tire cord steel. It is found that the shape of in- clusions can be controlled well, and the composition of inclusions varies in the industrial test as the following transformation route: MnO-A1EOa-SiO2→CaO-AIEOa-SiO2→MnO-A1203-SiO2. Inclusion plasticization can be achieved by controlling the binary basicity of top slag (CaO/SiO2 by mass) around 1.0 and the (A1203) content in top slag below 10wt%. Under these controlling conditions in the industrial test, almost all of inclusions in the wire rods achieve plastic deformation.展开更多
In the prediction of the end-point molten steel temperature of the ladle furnace, the influence of some factors is nonlinear. The prediction accuracy will be affected by directly inputting these nonlinear factors into...In the prediction of the end-point molten steel temperature of the ladle furnace, the influence of some factors is nonlinear. The prediction accuracy will be affected by directly inputting these nonlinear factors into the data-driven model. To solve this problem, an improved case-based reasoning model based on heat transfer calculation(CBR-HTC) was established through the nonlinear processing of these factors with software Ansys. The results showed that the CBR-HTC model improves the prediction accuracy of end-point molten steel temperature by5.33% and 7.00% compared with the original CBR model and 6.66% and 5.33% compared with the back propagation neural network(BPNN)model in the ranges of [-3, 3] and [-7, 7], respectively. It was found that the mean absolute error(MAE) and root-mean-square error(RMSE)values of the CBR-HTC model are also lower. It was verified that the prediction accuracy of the data-driven model can be improved by combining the mechanism model with the data-driven model.展开更多
To avoid slag sticking on the ladle immersion cover during the LATS refining and alloying process, the effect of Al2O3 on the melting point of the ladle slag was studied and the additives including CaF2, B2O3, Li2O, a...To avoid slag sticking on the ladle immersion cover during the LATS refining and alloying process, the effect of Al2O3 on the melting point of the ladle slag was studied and the additives including CaF2, B2O3, Li2O, and CaO were used to decrease the melting point of the ladle slag. The melting point was measured using the hemisphere method. The results show that the addition of Al2O3 to the ladle slag increases the melting point. The fluxing action is not remarkable if only CaF2 or CaO is used as the additive. The fluxing action of the composite additive obtained by the mixing of CaO and CaF2 in the mass proportion of ωCaO:ωCaF2=2 : 1 is preferred. The fluxing action of B2O3 is also notable. When the B2O3 content in mass percent is in the range from 2% to 10%, the corresponding melting point is 1 380 ℃ to 1 290℃. The fluxing action of Li2O is the most remarkable. When the Li2O content is up to 5%, the melting point of the slag is lower than 1 300 ℃.展开更多
文摘The heat transfer analysis was performed for an industrial ladle furnace (LF) with a capacity of 55-57 t in Turkey. The heat losses by conduction, convection and radiation from outer and bottom surfaces, top and electrodes of LF were determined in detail. Finally, some suggestions about decreasing heat losses were presented.
基金supported by the Major State Basic Research and Development Program of China (No.2010CB30806)
文摘Controlling conditions for inclusion plasticization were calculated by FactSage, and the steel/slag reaction equilibration time was determined by pre-equilibrium experiments. Laboratory experiments with different top slags were carried out in 90 rain, and industrial tests were performed based on the results of calculation and laboratory experiments. Scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) were used to determine the morphology and composition of inclusions in tire cord steel. It is found that the shape of in- clusions can be controlled well, and the composition of inclusions varies in the industrial test as the following transformation route: MnO-A1EOa-SiO2→CaO-AIEOa-SiO2→MnO-A1203-SiO2. Inclusion plasticization can be achieved by controlling the binary basicity of top slag (CaO/SiO2 by mass) around 1.0 and the (A1203) content in top slag below 10wt%. Under these controlling conditions in the industrial test, almost all of inclusions in the wire rods achieve plastic deformation.
基金financially supported by the National Natural Science Foundation of China (No.51674030)the Fundamental Research Funds for the Central Universities (Nos.FRF-TP-18-097A1 and FRF-BD-19-022A)。
文摘In the prediction of the end-point molten steel temperature of the ladle furnace, the influence of some factors is nonlinear. The prediction accuracy will be affected by directly inputting these nonlinear factors into the data-driven model. To solve this problem, an improved case-based reasoning model based on heat transfer calculation(CBR-HTC) was established through the nonlinear processing of these factors with software Ansys. The results showed that the CBR-HTC model improves the prediction accuracy of end-point molten steel temperature by5.33% and 7.00% compared with the original CBR model and 6.66% and 5.33% compared with the back propagation neural network(BPNN)model in the ranges of [-3, 3] and [-7, 7], respectively. It was found that the mean absolute error(MAE) and root-mean-square error(RMSE)values of the CBR-HTC model are also lower. It was verified that the prediction accuracy of the data-driven model can be improved by combining the mechanism model with the data-driven model.
基金Item Sponsored by National Natural Science Foundation of China (50474037) Natural Science Foundation of Jiangsu Higher Education Institutions of China (04KJB430022 ,05KJD450043)
文摘To avoid slag sticking on the ladle immersion cover during the LATS refining and alloying process, the effect of Al2O3 on the melting point of the ladle slag was studied and the additives including CaF2, B2O3, Li2O, and CaO were used to decrease the melting point of the ladle slag. The melting point was measured using the hemisphere method. The results show that the addition of Al2O3 to the ladle slag increases the melting point. The fluxing action is not remarkable if only CaF2 or CaO is used as the additive. The fluxing action of the composite additive obtained by the mixing of CaO and CaF2 in the mass proportion of ωCaO:ωCaF2=2 : 1 is preferred. The fluxing action of B2O3 is also notable. When the B2O3 content in mass percent is in the range from 2% to 10%, the corresponding melting point is 1 380 ℃ to 1 290℃. The fluxing action of Li2O is the most remarkable. When the Li2O content is up to 5%, the melting point of the slag is lower than 1 300 ℃.