Model checking multi-agent systems (MAS) always suffers from the state explosion problem. In this paper we focus on an abstraction technique which is one of the major methods for overcoming this problem. For a multi...Model checking multi-agent systems (MAS) always suffers from the state explosion problem. In this paper we focus on an abstraction technique which is one of the major methods for overcoming this problem. For a multi-agent system, we present a novel abstraction procedure which reduces the state space by collapsing the global states in the system. The abstraction is automatically computed according to the property to be verified. The resulting abstract system simulates the concrete system, while the universal temporal epistemic properties are preserved. Our abstraction is an over-approximation. If some universal temporal epistemic property is not satisfied, then we need to identify spurious counterexamples. We further show how to reduce complex counterexamples to simple structures, i.e., paths and loops, such that the counterexamples can be checked and the abstraction can be refined efficiently. Finally, we illustrate the abstraction technique with a card game.展开更多
The state space explosion problem is still the key obstacle for applying model checking to systems of industrial size. Abstraction-based methods have been particularly successful in this regard. This paper presents an...The state space explosion problem is still the key obstacle for applying model checking to systems of industrial size. Abstraction-based methods have been particularly successful in this regard. This paper presents an approach based on refinement of search space partition and abstraction which combines these two techniques for reducing the complexity of model checking. The refinement depends on the representation of each portion of search space. Especially, search space can be refined stepwise to get a better reduction. As reported in the case study, the integration of search space partition and abstraction improves the efficiency of verification with respect to the requirement of memory and obtains significant advantage over the use of each of them in isolation.展开更多
基金Supported by the National Natural Science Foundation of Chinaunder GrantNos.60425206,60773104,60403016,60633010(国家自然科学基金)in Partby the Jiangsu Planned Projects for Postdoctoral Research Funds of Chinaunder GrantNo.0701003B(江苏省博士后科研资助计划)
文摘Model checking multi-agent systems (MAS) always suffers from the state explosion problem. In this paper we focus on an abstraction technique which is one of the major methods for overcoming this problem. For a multi-agent system, we present a novel abstraction procedure which reduces the state space by collapsing the global states in the system. The abstraction is automatically computed according to the property to be verified. The resulting abstract system simulates the concrete system, while the universal temporal epistemic properties are preserved. Our abstraction is an over-approximation. If some universal temporal epistemic property is not satisfied, then we need to identify spurious counterexamples. We further show how to reduce complex counterexamples to simple structures, i.e., paths and loops, such that the counterexamples can be checked and the abstraction can be refined efficiently. Finally, we illustrate the abstraction technique with a card game.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 60573012 and 60421001) the National Grand FundamentalResearch 973 Program of China (Grant No. 2002cb312200)
文摘The state space explosion problem is still the key obstacle for applying model checking to systems of industrial size. Abstraction-based methods have been particularly successful in this regard. This paper presents an approach based on refinement of search space partition and abstraction which combines these two techniques for reducing the complexity of model checking. The refinement depends on the representation of each portion of search space. Especially, search space can be refined stepwise to get a better reduction. As reported in the case study, the integration of search space partition and abstraction improves the efficiency of verification with respect to the requirement of memory and obtains significant advantage over the use of each of them in isolation.