Enzymatic electrolysis cell(EEC)has advantages over microbial electrolysis cell(MEC)due to the needless of microbe inoculation and high-efficiency of enzymatic reaction.In this study,an EEC was first applied to achiev...Enzymatic electrolysis cell(EEC)has advantages over microbial electrolysis cell(MEC)due to the needless of microbe inoculation and high-efficiency of enzymatic reaction.In this study,an EEC was first applied to achieve the effective degradation of halogenated organic pollutants and dichloromethane(CH2Cl2)was utilized as a model pollutant.The results indicate that the degradation efficiency of CH2Cl2 after 2 hr reaction in the EEC was almost100%,which was significantly higher than that with enzyme(51.1%)or current(19.0%).The current induced the continuous regeneration of reduced glutathione(GSH),thus CH2Cl2 was degraded under the catalysis of GSH-dependent dehalogenase through stepwise dechlorination,and successively formed monochloromethane(CH3Cl)and methane(CH4).The kinetic result shows that with a current of 15 mA,the maximum specific degradation rate of CH2Cl2(3.77×10-3 hr-1)was increased by 5.7 times.The optimum condition for CH2Cl2 dechlorination was also obtained with pH,current and temperature of 7.0,15 mA and 35°C,respectively.Importantly,this study helps to understand the behavior of enzymes and the fate of halogenated organic pollutants with EEC,providing a possible treatment technology for halogenated organic pollutants.展开更多
采用氧化还原介质强化酶电解池(EEC)还原脱氯性能,结果发现,蒽醌-2,6-二磺酸盐(AQDS)、吩嗪-1-甲酰胺(PCN)、氰钴胺(CNB12)和核黄素(RF)均可明显提高EEC系统还原脱氯性能,二氯甲烷(DCM)脱氯率从57%分别提升至81%、72%、86%、84%.考虑到...采用氧化还原介质强化酶电解池(EEC)还原脱氯性能,结果发现,蒽醌-2,6-二磺酸盐(AQDS)、吩嗪-1-甲酰胺(PCN)、氰钴胺(CNB12)和核黄素(RF)均可明显提高EEC系统还原脱氯性能,二氯甲烷(DCM)脱氯率从57%分别提升至81%、72%、86%、84%.考虑到经济成本,选择AQDS作为氧化还原介质进行强化EEC系统还原脱氯性能.在EEC阴极中,AQDS被还原成AH_(2)QDS,可直接与DCM发生氧化还原反应,但不能作为脱卤酶辅酶提高DCM脱氯率.还原性谷胱甘肽(GSH)是脱卤酶的天然辅酶,AQDS加速GSH消耗,且抑制GSH再生.此外,AQDS提升了EEC系统的库仑效率,这意味着更多电子参与了AH_(2)QDS生成.因此,可以推测AQDS是通过直接还原作用强化EEC系统脱氯性能.AQDS-EEC系统的最佳pH值、温度、外加电压分别为7、35℃、-1.2 V vsAg/AgCl.展开更多
发展新型绿色、高效、低能耗和可持续的微生物修复技术用于处理氯代烯烃污染十分必要.专性有机卤化物呼吸菌能专一高效地去除氯代有机污染物,但在实际修复过程中电子供体如氢气的不足限制了其应用,因此寻找合适的供氢方式十分重要.利用...发展新型绿色、高效、低能耗和可持续的微生物修复技术用于处理氯代烯烃污染十分必要.专性有机卤化物呼吸菌能专一高效地去除氯代有机污染物,但在实际修复过程中电子供体如氢气的不足限制了其应用,因此寻找合适的供氢方式十分重要.利用光催化水解产氢为微生物提供电子供体可能是一种理想方式,然而国内外尚未有半人工光合系统驱动微生物脱卤呼吸的相关研究.本文利用脱卤拟球菌Dehalococcoides mccartyi菌株195(Dhc195)与硼掺杂石墨相氮化碳纳米片构建了B-C3N4-NS-Dhc195生物杂化体系,探究可见光驱动其对三氯乙烯(TCE)进行厌氧还原脱氯的可行性.研究结果表明,在(25±5) W m^(-2)的低强度可见光下该生物杂化体系可持续稳定地将TCE逐步还原脱氯至乙烯(ETH),脱氯速率为(1.13±0.13)μmol L^(-1)d^(-1);该杂化体系内检测到氢气生成,对Dhc195脱氯的用氢量进行衡算,其氢气利用率达84%.这表明可见光下光催化剂分解水产氢,脱氯菌利用氢气作为电子供体还原TCE,从而实现可见光驱动微生物脱卤呼吸.本研究提出了一种间接利用光能实现微生物处理氯代有机污染物的方法,对氯代有机污染物的绿色、低碳、可持续治理和修复具有启发意义.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 21576241 and 51678528)Hangzhou Agricultural and Social Development Research Program (No. 20180533B03)
文摘Enzymatic electrolysis cell(EEC)has advantages over microbial electrolysis cell(MEC)due to the needless of microbe inoculation and high-efficiency of enzymatic reaction.In this study,an EEC was first applied to achieve the effective degradation of halogenated organic pollutants and dichloromethane(CH2Cl2)was utilized as a model pollutant.The results indicate that the degradation efficiency of CH2Cl2 after 2 hr reaction in the EEC was almost100%,which was significantly higher than that with enzyme(51.1%)or current(19.0%).The current induced the continuous regeneration of reduced glutathione(GSH),thus CH2Cl2 was degraded under the catalysis of GSH-dependent dehalogenase through stepwise dechlorination,and successively formed monochloromethane(CH3Cl)and methane(CH4).The kinetic result shows that with a current of 15 mA,the maximum specific degradation rate of CH2Cl2(3.77×10-3 hr-1)was increased by 5.7 times.The optimum condition for CH2Cl2 dechlorination was also obtained with pH,current and temperature of 7.0,15 mA and 35°C,respectively.Importantly,this study helps to understand the behavior of enzymes and the fate of halogenated organic pollutants with EEC,providing a possible treatment technology for halogenated organic pollutants.
文摘采用氧化还原介质强化酶电解池(EEC)还原脱氯性能,结果发现,蒽醌-2,6-二磺酸盐(AQDS)、吩嗪-1-甲酰胺(PCN)、氰钴胺(CNB12)和核黄素(RF)均可明显提高EEC系统还原脱氯性能,二氯甲烷(DCM)脱氯率从57%分别提升至81%、72%、86%、84%.考虑到经济成本,选择AQDS作为氧化还原介质进行强化EEC系统还原脱氯性能.在EEC阴极中,AQDS被还原成AH_(2)QDS,可直接与DCM发生氧化还原反应,但不能作为脱卤酶辅酶提高DCM脱氯率.还原性谷胱甘肽(GSH)是脱卤酶的天然辅酶,AQDS加速GSH消耗,且抑制GSH再生.此外,AQDS提升了EEC系统的库仑效率,这意味着更多电子参与了AH_(2)QDS生成.因此,可以推测AQDS是通过直接还原作用强化EEC系统脱氯性能.AQDS-EEC系统的最佳pH值、温度、外加电压分别为7、35℃、-1.2 V vsAg/AgCl.
文摘发展新型绿色、高效、低能耗和可持续的微生物修复技术用于处理氯代烯烃污染十分必要.专性有机卤化物呼吸菌能专一高效地去除氯代有机污染物,但在实际修复过程中电子供体如氢气的不足限制了其应用,因此寻找合适的供氢方式十分重要.利用光催化水解产氢为微生物提供电子供体可能是一种理想方式,然而国内外尚未有半人工光合系统驱动微生物脱卤呼吸的相关研究.本文利用脱卤拟球菌Dehalococcoides mccartyi菌株195(Dhc195)与硼掺杂石墨相氮化碳纳米片构建了B-C3N4-NS-Dhc195生物杂化体系,探究可见光驱动其对三氯乙烯(TCE)进行厌氧还原脱氯的可行性.研究结果表明,在(25±5) W m^(-2)的低强度可见光下该生物杂化体系可持续稳定地将TCE逐步还原脱氯至乙烯(ETH),脱氯速率为(1.13±0.13)μmol L^(-1)d^(-1);该杂化体系内检测到氢气生成,对Dhc195脱氯的用氢量进行衡算,其氢气利用率达84%.这表明可见光下光催化剂分解水产氢,脱氯菌利用氢气作为电子供体还原TCE,从而实现可见光驱动微生物脱卤呼吸.本研究提出了一种间接利用光能实现微生物处理氯代有机污染物的方法,对氯代有机污染物的绿色、低碳、可持续治理和修复具有启发意义.