There has been a great deal of Interests in the estimation of grassland biophysical parameters such as percentage of vegetation cover (PVC), aboveground biomass, and leaf-area index with remote sensing data at the c...There has been a great deal of Interests in the estimation of grassland biophysical parameters such as percentage of vegetation cover (PVC), aboveground biomass, and leaf-area index with remote sensing data at the canopy scale. In this paper, the percentage of vegetation cover was estimated from vegetation indices using Moderate Resolution Imaging Spectroradiometer (MODIS) data and red-edge parameters through the first derivative spectrum from in situ hypserspectral reflectance data. Hyperspectral reflectance measurements were made on grasslands in Inner Mongolia, China, using an Analytical Spectral Devices spectroradiometer. Vegetation indices such as the difference, simple ratio, normalized difference, renormalized difference, soil-adjusted and modified soil-adjusted vegetation indices (DVI, RVI, NDVI, RDVI, SAVI L=0.5 end MSAVI2) were calculated from the hyperspectral reflectance of various vegetation covers. The percentage of vegetation cover was estimated using an unsupervised spectral-contextual classifier automatically. Relationships between percentage of vegetation cover and various vegetation indices and red-edge parameters were compared using a linear and second-order polynomial regression. Our analysis indicated that MSAVI2 and RVI yielded more accurate estimations for a wide range of vegetation cover than other vegetation indices and red-edge parameters for the linear and second-order polynomial regression, respectively.展开更多
Land cover classification(LCC) in arid regions is of great significance to the assessment, prediction, and management of land desertification. Some studies have shown that the red-edge band of RapidE ye images was eff...Land cover classification(LCC) in arid regions is of great significance to the assessment, prediction, and management of land desertification. Some studies have shown that the red-edge band of RapidE ye images was effective for vegetation identification and could improve LCC accuracy. However, there has been no investigation of the effects of RapidE ye images' red-edge band and vegetation indices on LCC in arid regions where there are spectrally similar land covers mixed with very high or low vegetation coverage information and bare land. This study focused on a typical inland arid desert region located in Dunhuang Basin of northwestern China. First, five feature sets including or excluding the red-edge band and vegetation indices were constructed. Then, a land cover classification system involving plant communities was developed. Finally, random forest algorithm-based models with different feature sets were utilized for LCC. The conclusions drawn were as follows: 1) the red-edge band showed slight contribution to LCC accuracy; 2) vegetation indices had a significant positive effect on LCC; 3) simultaneous addition of the red-edge band and vegetation indices achieved a significant overall accuracy improvement(3.46% from 86.67%). In general, vegetation indices had larger effect than the red-edge band, and simultaneous addition of them significantly increased the accuracy of LCC in arid regions.展开更多
The nitrogen nutrition index(NNI)is a reliable indicator for diagnosing crop nitrogen(N)status.However,there is currently no specific vegetation index for the NNI inversion across multiple growth periods.To overcome t...The nitrogen nutrition index(NNI)is a reliable indicator for diagnosing crop nitrogen(N)status.However,there is currently no specific vegetation index for the NNI inversion across multiple growth periods.To overcome the limitations of the traditional direct NNI inversion method(NNI_(T1))of the vegetation index and traditional indirect NNI inversion method(NNI_(T2))by inverting intermediate variables including the aboveground dry biomass(AGB)and plant N concentration(PNC),this study proposed a new NNI remote sensing index(NNI_(RS)).A remote-sensing-based critical N dilution curve(Nc_(_RS))was set up directly from two vegetation indices and then used to calculate NNI_(RS).Field data including AGB,PNC,and canopy hyperspectral data were collected over four growing seasons(2012–2013(Exp.1),2013–2014(Exp.2),2014–2015(Exp.3),2015–2016(Exp.4))in Beijing,China.All experimental datasets were cross-validated to each of the NNI models(NNI_(T1),NNI_(T2)and NNI_(RS)).The results showed that:(1)the NNI_(RS)models were represented by the standardized leaf area index determining index(sLAIDI)and the red-edge chlorophyll index(CI_(red edge))in the form of NNI_(RS)=CI_(red edge)/(a×sLAIDI~b),where"a"equals 2.06,2.10,2.08 and 2.02 and"b"equals 0.66,0.73,0.67 and 0.62 when the modeling set data came from Exp.1/2/4,Exp.1/2/3,Exp.1/3/4,and Exp.2/3/4,respectively;(2)the NNI_(RS)models achieved better performance than the other two NNI revised methods,and the ranges of R2 and RMSE were 0.50–0.82 and 0.12–0.14,respectively;(3)when the remaining data were used for verification,the NNI_(RS)models also showed good stability,with RMSE values of 0.09,0.18,0.13 and 0.10,respectively.Therefore,it is concluded that the NNI_(RS)method is promising for the remote assessment of crop N status.展开更多
Leaf chlorophyll content(LCC)is an important physiological indicator of the actual health status of individual plants.An accurate estimation of LCC can therefore provide valuable information for precision field manage...Leaf chlorophyll content(LCC)is an important physiological indicator of the actual health status of individual plants.An accurate estimation of LCC can therefore provide valuable information for precision field management.Red-edge information from hyperspectral data has been widely used to estimate crop LCC.However,after the advent of red-edge bands in satellite imagery,no systematic evaluation of the performance of satellite data has been conducted.Toward this end,we analyze herein the performance of winter wheat LCC retrieval of currant and forthcoming satellites(RapidEye,Sentinel-2 and EnMAP)and their new red-edge bands by using partial least squares regression(PLSR)and a vegetation-indexbased approach.These satellite spectral data were obtained by resampling ground-measured hyperspectral data under various field conditions and according to specific spectral response functions and spectral resolution.The results showed:1)This study confirmed that RapidEye,Sentinel-2 and EnMAP data are suitable for winter wheat LCC retrieval.For the PLSR approach,Sentinel-2 data provided more accurate estimates of LCC(R2=0.755,0.844,0.805 for 2002,2010,and 2002+2010)than do RapidEye data(R2=0.689,0.710,0.707 for 2002,2010,and 2002+2010)and EnMAP data(R2=0.735,0.867,0.771 for 2002,2010,and 2002+2010).For index-based approaches,the MERIS terrestrial chlorophyll index,which is a vegetation index with two red-edge bands,was the most sensitive and robust index for LCC for both the Sentinel-2 and EnMAP data(R2≥0.628),and the indices(NDRE1,SRRE1 and CIRE1)with a single red-edge band were the most sensitive and robust indices for the RapidEye data(R2≥0.420);2)According to the analysis of the effect of the wavelength and number of used red-edge spectral bands on LCC retrieval,the short-wavelength red-edge bands(from 699 to 734 nm)provided more accurate predictions when using the PLSR approach,whereas the long-wavelength red-edge bands(740 to 783 nm)gave more accurate predictions when using the vegetation indice(VI)approach.In additi展开更多
为探索国产高分一号宽幅(GF-1 Wide Field of View,GF-1 WFV)数据以及具有宽覆盖、红边波段(Red-Edge band,RE)的高分六号(GF-6)卫星数据在森林郁闭度(Forest Canopy Closure,FCC)定量反演中的潜力,本研究以GF-1 WFV多光谱数据为基础,...为探索国产高分一号宽幅(GF-1 Wide Field of View,GF-1 WFV)数据以及具有宽覆盖、红边波段(Red-Edge band,RE)的高分六号(GF-6)卫星数据在森林郁闭度(Forest Canopy Closure,FCC)定量反演中的潜力,本研究以GF-1 WFV多光谱数据为基础,添加哨兵2号(Sentinel-2A)红边波段,模拟GF-6红边波段特性,并提取相关纹理信息(Texture Information,TI)、植被指数(Vegetation Index,VI)和红边指数(Red-edge Index,RI),同时添加太阳入射角的余弦值cosi和1/cosi进一步探究了地形因素(Topographic Factors,TF)对FCC估测的影响,利用快速迭代特征选择的k-NN(kNearest Neighbor with Fast Iterative Features Selection,KNN-FIFS)模型,实现了内蒙古大兴安岭根河研究区FCC的定量反演,并对比逐步多元线性回归(Stepwise Multiple Linear Regressions,SMLR)和支持向量机(Support Vector Machine,SVM)估测结果。通过44块调查样地实测数据验证发现:基于GF-1 WFV估测的FCC与实测数据具有很好的一致性,R2=0.52,RMSE=0.08;GF-1 WFV+VI+TI估测结果为R2=0.56,RMSE=0.08;GF-1 WFV+RE+RI+TI的精度明显提高,R2=0.63,RMSE=0.07;GF-1 WFV+RE+RI+TI+TF的精度最高,R2=0.68,RMSE=0.07,并高于SMLR(R2=0.39,RMSE=0.10)和SVM(R2=0.49,RMSE=0.10)方法。KNN-FIFS方法比SMLR和SVM方法更适用于FCC遥感估测,且添加红边信息经地形校正后,能有效提高FCC的估测精度。展开更多
Background:Accurate mapping of tree species is highly desired in the management and research of plantation forests,whose ecosystem services are currently under threats.Time-series multispectral satellite images,e.g.,f...Background:Accurate mapping of tree species is highly desired in the management and research of plantation forests,whose ecosystem services are currently under threats.Time-series multispectral satellite images,e.g.,from Landsat-8(L8)and Sentinel-2(S2),have been proven useful in mapping general forest types,yet we do not know quantitatively how their spectral features(e.g.,red-edge)and temporal frequency of data acquisitions(e.g.,16-day vs.5-day)contribute to plantation forest mapping to the species level.Moreover,it is unclear to what extent the fusion of L8 and S2 will result in improvements in tree species mapping of northern plantation forests in China.Methods:We designed three sets of classification experiments(i.e.,single-date,multi-date,and spectral-temporal)to evaluate the performances of L8 and S2 data for mapping keystone timber tree species in northern China.We first used seven pairs of L8 and S2 images to evaluate the performances of L8 and S2 key spectral features for separating these tree species across key growing stages.Then we extracted the spectral-temporal features from all available images of different temporal frequency of data acquisition(i.e.,L8 time series,S2 time series,and fusion of L8 and S2)to assess the contribution of image temporal frequency on the accuracy of tree species mapping in the study area.Results:1)S2 outperformed L8 images in all classification experiments,with or without the red edge bands(0.4%–3.4%and 0.2%–4.4%higher for overall accuracy and macro-F1,respectively);2)NDTI(the ratio of SWIR1 minus SWIR2 to SWIR1 plus SWIR2)and Tasseled Cap coefficients were most important features in all the classifications,and for time-series experiments,the spectral-temporal features of red band-related vegetation indices were most useful;3)increasing the temporal frequency of data acquisition can improve overall accuracy of tree species mapping for up to 3.2%(from 90.1%using single-date imagery to 93.3%using S2 time-series),yet similar overall accuracies were achieved using S2 time展开更多
Estimating spatial variation in crop transpiration coefficients(CTc) and aboveground biomass(AGB)rapidly and accurately by remote sensing can facilitate precision irrigation management in semiarid regions. This study ...Estimating spatial variation in crop transpiration coefficients(CTc) and aboveground biomass(AGB)rapidly and accurately by remote sensing can facilitate precision irrigation management in semiarid regions. This study developed and assessed a novel machine learning(ML) method for estimating CTc and AGB using time-series unmanned aerial vehicle(UAV)-based multispectral vegetation indices(VIs)of maize under several irrigation treatments at the field scale. Four ML regression methods: multiple linear regression(MLR), support vector regression(SVR), random forest regression(RFR), and adaptive boosting regression(ABR), were used to address the complex relationship between CTcand VIs. AGB was then estimated using exponential, logistic, sigmoid, and linear equations because of their clear mathematical formulations based on the optimal CTcestimation model. The UAV VIs-derived CTcusing the RFR estimation model yielded the highest accuracy(R^(2)= 0.91, RMSE = 0.0526, and n RMSE = 9.07%). The normalized difference red-edge index, transformed chlorophyll absorption in reflectance index, and simple ratio contributed significantly to the RFR-based CTcmodel. The accuracy of AGB estimation using nonlinear methods was higher than that using the linear method. The exponential method yielded the highest accuracy(R^(2)= 0.76, RMSE = 282.8 g m, and n RMSE = 39.24%) in both the 2018 and 2019 growing seasons. The study confirms that AGB estimation models based on cumulative CTcperformed well under several irrigation treatments using high-resolution time-series UAV multispectral VIs and can support irrigation management with high spatial precision at a field scale.展开更多
Leaf area index(LAI)and canopy chlorophyll density(CCD)are key indicators of crop growth status.In this study,we compared several vegetation indices and their red-edge modified counterparts to evaluate the optimal red...Leaf area index(LAI)and canopy chlorophyll density(CCD)are key indicators of crop growth status.In this study,we compared several vegetation indices and their red-edge modified counterparts to evaluate the optimal red-edge bands and the best vegetation index at different growth stages.The indices were calculated with Sentinel-2 MSI data and hyperspectral data.Their performances were validated against ground measurements using R2,RMSE,and bias.The results suggest that indices computed with hyperspectral data exhibited higher R2 than multispectral data at the late jointing stage,head emergence stage,and filling stage.Furthermore,rededge modified indices outperformed the traditional indices for both data genres.Inversion models indicated that the indices with short red-edge wavelengths showed better estimation at the early joint-ing and milk development stage,while indices with long red-edge wavelength estimate the sought variables better at the middle three stages.The results were consistent with the red-edge inflec-tion point shift at different growth stages.The best indices for Sentinel-2 LAI retrieval,Sentinel-2 CCD retrieval,hyperspectral LAI retrieval,and hyperspectral CCD retrieval at five growth stages were determined in the research.These results are beneficial to crop trait monitoring by providing references for crop biophysical and bio-chemical parameters retrieval.展开更多
The objective of this work was to monitor the growth status of pepper and provide precise guidance on fertilization through non-destructive detection methods for chlorophyll content based on spectral transmittance.The...The objective of this work was to monitor the growth status of pepper and provide precise guidance on fertilization through non-destructive detection methods for chlorophyll content based on spectral transmittance.The analysis of the narrower red-edge spectral region(680-760 nm)reduced the requirements for light sources and light detection sensors,and provided a simpler and more accurate method of data acquisition for the process of developing instruments for estimating chlorophyll content in leaves.The red-edge region of spectral transmittance was demonstrated to be closely related to chlorophyll content.Regression models for estimating chlorophyll content with seven different methods were developed using the four red-edge parameters extracted from the red-edge region.The problems of multicollinearity of red-edge parameters and errors in model coefficients were solved by the ridge regression method in the process of building a multivariate regression model.The results indicated that the ridge regression method reduces the errors of the model coefficients and constant terms while improving the detection accuracy,thus the ridge regression model could estimate the leaf chlorophyll content more accurately and repeatedly.展开更多
基金Supported by the National Natural Science Foundation of China (30371018) and the State Key Basic Research and Development Plan of Chfna (2003DEA2C010-13).
文摘There has been a great deal of Interests in the estimation of grassland biophysical parameters such as percentage of vegetation cover (PVC), aboveground biomass, and leaf-area index with remote sensing data at the canopy scale. In this paper, the percentage of vegetation cover was estimated from vegetation indices using Moderate Resolution Imaging Spectroradiometer (MODIS) data and red-edge parameters through the first derivative spectrum from in situ hypserspectral reflectance data. Hyperspectral reflectance measurements were made on grasslands in Inner Mongolia, China, using an Analytical Spectral Devices spectroradiometer. Vegetation indices such as the difference, simple ratio, normalized difference, renormalized difference, soil-adjusted and modified soil-adjusted vegetation indices (DVI, RVI, NDVI, RDVI, SAVI L=0.5 end MSAVI2) were calculated from the hyperspectral reflectance of various vegetation covers. The percentage of vegetation cover was estimated using an unsupervised spectral-contextual classifier automatically. Relationships between percentage of vegetation cover and various vegetation indices and red-edge parameters were compared using a linear and second-order polynomial regression. Our analysis indicated that MSAVI2 and RVI yielded more accurate estimations for a wide range of vegetation cover than other vegetation indices and red-edge parameters for the linear and second-order polynomial regression, respectively.
基金Under the auspices of Fundamental Research Funds for Central Universities,China University of Geosciences(Wuhan)(No.CUGL150417)National Natural Science Foundation of China(No.41274036,41301026)
文摘Land cover classification(LCC) in arid regions is of great significance to the assessment, prediction, and management of land desertification. Some studies have shown that the red-edge band of RapidE ye images was effective for vegetation identification and could improve LCC accuracy. However, there has been no investigation of the effects of RapidE ye images' red-edge band and vegetation indices on LCC in arid regions where there are spectrally similar land covers mixed with very high or low vegetation coverage information and bare land. This study focused on a typical inland arid desert region located in Dunhuang Basin of northwestern China. First, five feature sets including or excluding the red-edge band and vegetation indices were constructed. Then, a land cover classification system involving plant communities was developed. Finally, random forest algorithm-based models with different feature sets were utilized for LCC. The conclusions drawn were as follows: 1) the red-edge band showed slight contribution to LCC accuracy; 2) vegetation indices had a significant positive effect on LCC; 3) simultaneous addition of the red-edge band and vegetation indices achieved a significant overall accuracy improvement(3.46% from 86.67%). In general, vegetation indices had larger effect than the red-edge band, and simultaneous addition of them significantly increased the accuracy of LCC in arid regions.
基金supported by the earmarked fund for China Agriculture Research System(CARS-03)the National Key Research and Development Program of China(2017YFD0201501 and 2016YFD020060306)the National Natural Science Foundation of China(41701375 and 61661136003)。
文摘The nitrogen nutrition index(NNI)is a reliable indicator for diagnosing crop nitrogen(N)status.However,there is currently no specific vegetation index for the NNI inversion across multiple growth periods.To overcome the limitations of the traditional direct NNI inversion method(NNI_(T1))of the vegetation index and traditional indirect NNI inversion method(NNI_(T2))by inverting intermediate variables including the aboveground dry biomass(AGB)and plant N concentration(PNC),this study proposed a new NNI remote sensing index(NNI_(RS)).A remote-sensing-based critical N dilution curve(Nc_(_RS))was set up directly from two vegetation indices and then used to calculate NNI_(RS).Field data including AGB,PNC,and canopy hyperspectral data were collected over four growing seasons(2012–2013(Exp.1),2013–2014(Exp.2),2014–2015(Exp.3),2015–2016(Exp.4))in Beijing,China.All experimental datasets were cross-validated to each of the NNI models(NNI_(T1),NNI_(T2)and NNI_(RS)).The results showed that:(1)the NNI_(RS)models were represented by the standardized leaf area index determining index(sLAIDI)and the red-edge chlorophyll index(CI_(red edge))in the form of NNI_(RS)=CI_(red edge)/(a×sLAIDI~b),where"a"equals 2.06,2.10,2.08 and 2.02 and"b"equals 0.66,0.73,0.67 and 0.62 when the modeling set data came from Exp.1/2/4,Exp.1/2/3,Exp.1/3/4,and Exp.2/3/4,respectively;(2)the NNI_(RS)models achieved better performance than the other two NNI revised methods,and the ranges of R2 and RMSE were 0.50–0.82 and 0.12–0.14,respectively;(3)when the remaining data were used for verification,the NNI_(RS)models also showed good stability,with RMSE values of 0.09,0.18,0.13 and 0.10,respectively.Therefore,it is concluded that the NNI_(RS)method is promising for the remote assessment of crop N status.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA19080304)the Agricultural Science and Technology Innovation of Sanya, China (2015KJ04)+4 种基金the Natural Science Foundation of Hainan Province, China (20164179, 2016CXTD015)the Technology Research, Development and Promotion Program of Hainan Province, China (ZDXM2015102)the Hainan Provincial Department of Science and Technology, China (ZDKJ2016021)the National Natural Science Foundation of China (41601466)the Youth Innovation Promotion Association of Chinese Academy of Sciences (CAS) (2017085)
文摘Leaf chlorophyll content(LCC)is an important physiological indicator of the actual health status of individual plants.An accurate estimation of LCC can therefore provide valuable information for precision field management.Red-edge information from hyperspectral data has been widely used to estimate crop LCC.However,after the advent of red-edge bands in satellite imagery,no systematic evaluation of the performance of satellite data has been conducted.Toward this end,we analyze herein the performance of winter wheat LCC retrieval of currant and forthcoming satellites(RapidEye,Sentinel-2 and EnMAP)and their new red-edge bands by using partial least squares regression(PLSR)and a vegetation-indexbased approach.These satellite spectral data were obtained by resampling ground-measured hyperspectral data under various field conditions and according to specific spectral response functions and spectral resolution.The results showed:1)This study confirmed that RapidEye,Sentinel-2 and EnMAP data are suitable for winter wheat LCC retrieval.For the PLSR approach,Sentinel-2 data provided more accurate estimates of LCC(R2=0.755,0.844,0.805 for 2002,2010,and 2002+2010)than do RapidEye data(R2=0.689,0.710,0.707 for 2002,2010,and 2002+2010)and EnMAP data(R2=0.735,0.867,0.771 for 2002,2010,and 2002+2010).For index-based approaches,the MERIS terrestrial chlorophyll index,which is a vegetation index with two red-edge bands,was the most sensitive and robust index for LCC for both the Sentinel-2 and EnMAP data(R2≥0.628),and the indices(NDRE1,SRRE1 and CIRE1)with a single red-edge band were the most sensitive and robust indices for the RapidEye data(R2≥0.420);2)According to the analysis of the effect of the wavelength and number of used red-edge spectral bands on LCC retrieval,the short-wavelength red-edge bands(from 699 to 734 nm)provided more accurate predictions when using the PLSR approach,whereas the long-wavelength red-edge bands(740 to 783 nm)gave more accurate predictions when using the vegetation indice(VI)approach.In additi
文摘为探索国产高分一号宽幅(GF-1 Wide Field of View,GF-1 WFV)数据以及具有宽覆盖、红边波段(Red-Edge band,RE)的高分六号(GF-6)卫星数据在森林郁闭度(Forest Canopy Closure,FCC)定量反演中的潜力,本研究以GF-1 WFV多光谱数据为基础,添加哨兵2号(Sentinel-2A)红边波段,模拟GF-6红边波段特性,并提取相关纹理信息(Texture Information,TI)、植被指数(Vegetation Index,VI)和红边指数(Red-edge Index,RI),同时添加太阳入射角的余弦值cosi和1/cosi进一步探究了地形因素(Topographic Factors,TF)对FCC估测的影响,利用快速迭代特征选择的k-NN(kNearest Neighbor with Fast Iterative Features Selection,KNN-FIFS)模型,实现了内蒙古大兴安岭根河研究区FCC的定量反演,并对比逐步多元线性回归(Stepwise Multiple Linear Regressions,SMLR)和支持向量机(Support Vector Machine,SVM)估测结果。通过44块调查样地实测数据验证发现:基于GF-1 WFV估测的FCC与实测数据具有很好的一致性,R2=0.52,RMSE=0.08;GF-1 WFV+VI+TI估测结果为R2=0.56,RMSE=0.08;GF-1 WFV+RE+RI+TI的精度明显提高,R2=0.63,RMSE=0.07;GF-1 WFV+RE+RI+TI+TF的精度最高,R2=0.68,RMSE=0.07,并高于SMLR(R2=0.39,RMSE=0.10)和SVM(R2=0.49,RMSE=0.10)方法。KNN-FIFS方法比SMLR和SVM方法更适用于FCC遥感估测,且添加红边信息经地形校正后,能有效提高FCC的估测精度。
基金supported by National Natural Science Foundation of China(Grant No.41901382)Open Fund of State Key Laboratory of Remote Sensing Science(Grant No.OFSLRSS201917)the HZAU research startup fund(No.11041810340,No.11041810341).
文摘Background:Accurate mapping of tree species is highly desired in the management and research of plantation forests,whose ecosystem services are currently under threats.Time-series multispectral satellite images,e.g.,from Landsat-8(L8)and Sentinel-2(S2),have been proven useful in mapping general forest types,yet we do not know quantitatively how their spectral features(e.g.,red-edge)and temporal frequency of data acquisitions(e.g.,16-day vs.5-day)contribute to plantation forest mapping to the species level.Moreover,it is unclear to what extent the fusion of L8 and S2 will result in improvements in tree species mapping of northern plantation forests in China.Methods:We designed three sets of classification experiments(i.e.,single-date,multi-date,and spectral-temporal)to evaluate the performances of L8 and S2 data for mapping keystone timber tree species in northern China.We first used seven pairs of L8 and S2 images to evaluate the performances of L8 and S2 key spectral features for separating these tree species across key growing stages.Then we extracted the spectral-temporal features from all available images of different temporal frequency of data acquisition(i.e.,L8 time series,S2 time series,and fusion of L8 and S2)to assess the contribution of image temporal frequency on the accuracy of tree species mapping in the study area.Results:1)S2 outperformed L8 images in all classification experiments,with or without the red edge bands(0.4%–3.4%and 0.2%–4.4%higher for overall accuracy and macro-F1,respectively);2)NDTI(the ratio of SWIR1 minus SWIR2 to SWIR1 plus SWIR2)and Tasseled Cap coefficients were most important features in all the classifications,and for time-series experiments,the spectral-temporal features of red band-related vegetation indices were most useful;3)increasing the temporal frequency of data acquisition can improve overall accuracy of tree species mapping for up to 3.2%(from 90.1%using single-date imagery to 93.3%using S2 time-series),yet similar overall accuracies were achieved using S2 time
基金funded by the National Natural Science Foundation of China (51979233)the Natural Science Basic Research Plan in Shaanxi Province of China (2022JQ-363)。
文摘Estimating spatial variation in crop transpiration coefficients(CTc) and aboveground biomass(AGB)rapidly and accurately by remote sensing can facilitate precision irrigation management in semiarid regions. This study developed and assessed a novel machine learning(ML) method for estimating CTc and AGB using time-series unmanned aerial vehicle(UAV)-based multispectral vegetation indices(VIs)of maize under several irrigation treatments at the field scale. Four ML regression methods: multiple linear regression(MLR), support vector regression(SVR), random forest regression(RFR), and adaptive boosting regression(ABR), were used to address the complex relationship between CTcand VIs. AGB was then estimated using exponential, logistic, sigmoid, and linear equations because of their clear mathematical formulations based on the optimal CTcestimation model. The UAV VIs-derived CTcusing the RFR estimation model yielded the highest accuracy(R^(2)= 0.91, RMSE = 0.0526, and n RMSE = 9.07%). The normalized difference red-edge index, transformed chlorophyll absorption in reflectance index, and simple ratio contributed significantly to the RFR-based CTcmodel. The accuracy of AGB estimation using nonlinear methods was higher than that using the linear method. The exponential method yielded the highest accuracy(R^(2)= 0.76, RMSE = 282.8 g m, and n RMSE = 39.24%) in both the 2018 and 2019 growing seasons. The study confirms that AGB estimation models based on cumulative CTcperformed well under several irrigation treatments using high-resolution time-series UAV multispectral VIs and can support irrigation management with high spatial precision at a field scale.
基金funded by National Natural Science Foundation of China(Project Nos.:41871339 and 41901369),China Scholarship Council(CSC),National Special Support Program for High-level Personnel Recruitment(Wenjiang Huang)and the Ten-thousand Talents Program(Wenjiang Huang).
文摘Leaf area index(LAI)and canopy chlorophyll density(CCD)are key indicators of crop growth status.In this study,we compared several vegetation indices and their red-edge modified counterparts to evaluate the optimal red-edge bands and the best vegetation index at different growth stages.The indices were calculated with Sentinel-2 MSI data and hyperspectral data.Their performances were validated against ground measurements using R2,RMSE,and bias.The results suggest that indices computed with hyperspectral data exhibited higher R2 than multispectral data at the late jointing stage,head emergence stage,and filling stage.Furthermore,rededge modified indices outperformed the traditional indices for both data genres.Inversion models indicated that the indices with short red-edge wavelengths showed better estimation at the early joint-ing and milk development stage,while indices with long red-edge wavelength estimate the sought variables better at the middle three stages.The results were consistent with the red-edge inflec-tion point shift at different growth stages.The best indices for Sentinel-2 LAI retrieval,Sentinel-2 CCD retrieval,hyperspectral LAI retrieval,and hyperspectral CCD retrieval at five growth stages were determined in the research.These results are beneficial to crop trait monitoring by providing references for crop biophysical and bio-chemical parameters retrieval.
基金supported by the Innovation Project of Jilin Academy of Agricultural Sciences(Grant No.CXGC2021DX016)China Agricultural Research System of MOF and MARA(Grant No.CARS-24-G-05)Jilin Provincial Development and Reform Commission Industry Independent Innovation Capacity Building Project(Grant No.2020C013).
文摘The objective of this work was to monitor the growth status of pepper and provide precise guidance on fertilization through non-destructive detection methods for chlorophyll content based on spectral transmittance.The analysis of the narrower red-edge spectral region(680-760 nm)reduced the requirements for light sources and light detection sensors,and provided a simpler and more accurate method of data acquisition for the process of developing instruments for estimating chlorophyll content in leaves.The red-edge region of spectral transmittance was demonstrated to be closely related to chlorophyll content.Regression models for estimating chlorophyll content with seven different methods were developed using the four red-edge parameters extracted from the red-edge region.The problems of multicollinearity of red-edge parameters and errors in model coefficients were solved by the ridge regression method in the process of building a multivariate regression model.The results indicated that the ridge regression method reduces the errors of the model coefficients and constant terms while improving the detection accuracy,thus the ridge regression model could estimate the leaf chlorophyll content more accurately and repeatedly.