期刊文献+
共找到299篇文章
< 1 2 15 >
每页显示 20 50 100
RapidEye卫星红边波段对农作物面积提取精度的影响 被引量:50
1
作者 刘佳 王利民 +4 位作者 滕飞 杨玲波 高建孟 姚保民 杨福刚 《农业工程学报》 EI CAS CSCD 北大核心 2016年第13期140-148,共9页
在传统的可见光与红外波段基础上增加红边波段(690~730 nm),是当前高分辨卫星传感器研制的明显趋势。德国Rapid Eye卫星携带有红边波段传感器,该文基于黑龙江省北安市东胜乡2014年7月27日的Rapid Eye遥感数据,采用监督分类的方法,通... 在传统的可见光与红外波段基础上增加红边波段(690~730 nm),是当前高分辨卫星传感器研制的明显趋势。德国Rapid Eye卫星携带有红边波段传感器,该文基于黑龙江省北安市东胜乡2014年7月27日的Rapid Eye遥感数据,采用监督分类的方法,通过计算有红边参与条件下、无红边参与条件下,玉米、大豆及其他3种地物类型的可分性测度、分类精度及景观破碎度等指标,比较分析了2种波段组合方式下的红边波段对农作物面积提取精度的影响。其中,监督分类的训练样本是以覆盖研究区的2 km×2 km格网为基本单元,在玉米和大豆面积比例等概率原则下,选取了10个网格作为训练样本,样方内作物的识别采用目视解译的方式完成。精度验证是采用覆盖研究区的农作物面积本底调查结果评价的,本底调查数据是在5 m空间分辨率Rapideye数据初步分类基础上,根据多时相Landsat-8/OLI(Operational Land Imager)数据季节变化规律,结合地面调查,采用目视修正的方法完成。结果表明,有红边参与的玉米、大豆和其他3种地物类型识别的总体精度为88.4%,Kappa系数为0.81,玉米、大豆和其他3种地物类型的制图精度分别为93.1%,86.0%和87.3%;没有红边参与的3种地物识别的总体精度为81.7%,Kappa系数为0.71,玉米、大豆和其他3种地区类型的制图精度分别为83.9%,73.4%和84.6%;通过引入红边波段,3种地物的总体识别精度提高了6.7百分点,玉米、大豆和其他3种地物类型的识别精度分别提高了9.2百分点,12.6百分点和2.7百分点。利用Jeffries-Matusita方法计算了3种地物的可分性测度,玉米-大豆、玉米-其他、大豆-其他的可分性测度分别由0.84变为1.73、1.37变为1.81、1.27变为1.29;采用破碎度指数计算了景观破碎度,地块数量减少了69.2%,平均地块面积增加了2.2倍,平均地块周长增加了60.50%,地块面积与周长比增加了1.0倍。由上述研究结� 展开更多
关键词 农作物 遥感 卫星 红边 面积提取
下载PDF
机器学习法的干旱区典型农作物分类 被引量:34
2
作者 黄双燕 杨辽 +1 位作者 陈曦 姚远 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2018年第10期3169-3176,共8页
当前,基于机器学习方法开展农作物分类研究,对于确保干旱区粮食安全和生态安全有着极为重要的现实意义。基于机器学习方法,采用时间序列Sentinel 2A遥感数据提取农作物分类信息,通过引入地块基元和红边特征,探讨了不同分类特征组合对机... 当前,基于机器学习方法开展农作物分类研究,对于确保干旱区粮食安全和生态安全有着极为重要的现实意义。基于机器学习方法,采用时间序列Sentinel 2A遥感数据提取农作物分类信息,通过引入地块基元和红边特征,探讨了不同分类特征组合对机器学习分类精度的影响。结果表明:随机森林分类器可以有效集成光谱和植被指数等多维向量的优势,将其应用于干旱区典型农作物分类上的精度均在89%以上,分类组总体精度最高可达94.02%。地块基元点集支持下的分类特征提取方法能够提高机器学习效率和农作物分类精度,使光谱组及指数组的分类精度分别提高3.13%和4.07%,并能有效解决"椒盐"效应及耕地边缘廓线模糊等问题。红边光谱和红边指数的引入分别使随机森林分类器总体精度提高2.39%和1.63%,并使春、冬小麦的识别能力显著提高,表明红边特征能够帮助分类器更敏感地捕捉不同作物特有的生长特性及物候差异。该研究结果可为机器学习方法及Sentinel 2A卫星在干旱区农业遥感的应用提供参考。 展开更多
关键词 机器学习 随机森林 农作物分类 地块基元 红边波段
下载PDF
指示冬小麦条锈病严重度的两个新的红边参数 被引量:23
3
作者 王圆圆 陈云浩 +1 位作者 李京 黄文江 《遥感学报》 EI CSCD 北大核心 2007年第6期875-881,共7页
通过人工田间诱发不同等级条锈病,在不同生育期测定了36条感染不同严重程度条锈病的冬小麦冠层光谱及相应叶片的生理生化参量。对测定的冬小麦红边一阶微分光谱进行分析,发现随着病情严重度的增加,红边一阶微分的前峰(700nm附近)越来越... 通过人工田间诱发不同等级条锈病,在不同生育期测定了36条感染不同严重程度条锈病的冬小麦冠层光谱及相应叶片的生理生化参量。对测定的冬小麦红边一阶微分光谱进行分析,发现随着病情严重度的增加,红边一阶微分的前峰(700nm附近)越来越明显,后峰(约在725—740nm)越来越不突出,以红边一阶微分的双峰特征随病情指数的变化为基础,设计了两个新型的红边参数:DSr和Ar,它们可以分别用来描述红边一阶微分光谱曲线的陡峭度和不对称性,与其他常用的红边参数(红边位置、红边一阶微分最大值,红边一阶微分所包围面积)相比,新参数反演病情严重度的精度更高。 展开更多
关键词 高光谱 红边 条锈病 病情指数
下载PDF
Comparison of Vegetation Indices and Red-edge Parameters for Estimating Grassland Cover from Canopy Reflectance Data 被引量:18
4
作者 Zhan-Yu Liu Jing-Feng Huang +1 位作者 Xin-Hong Wu Yong-Ping Dong 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2007年第3期299-306,共8页
There has been a great deal of Interests in the estimation of grassland biophysical parameters such as percentage of vegetation cover (PVC), aboveground biomass, and leaf-area index with remote sensing data at the c... There has been a great deal of Interests in the estimation of grassland biophysical parameters such as percentage of vegetation cover (PVC), aboveground biomass, and leaf-area index with remote sensing data at the canopy scale. In this paper, the percentage of vegetation cover was estimated from vegetation indices using Moderate Resolution Imaging Spectroradiometer (MODIS) data and red-edge parameters through the first derivative spectrum from in situ hypserspectral reflectance data. Hyperspectral reflectance measurements were made on grasslands in Inner Mongolia, China, using an Analytical Spectral Devices spectroradiometer. Vegetation indices such as the difference, simple ratio, normalized difference, renormalized difference, soil-adjusted and modified soil-adjusted vegetation indices (DVI, RVI, NDVI, RDVI, SAVI L=0.5 end MSAVI2) were calculated from the hyperspectral reflectance of various vegetation covers. The percentage of vegetation cover was estimated using an unsupervised spectral-contextual classifier automatically. Relationships between percentage of vegetation cover and various vegetation indices and red-edge parameters were compared using a linear and second-order polynomial regression. Our analysis indicated that MSAVI2 and RVI yielded more accurate estimations for a wide range of vegetation cover than other vegetation indices and red-edge parameters for the linear and second-order polynomial regression, respectively. 展开更多
关键词 GRASSLAND hypserspectral remote sensing percentage of vegetation cover red-edge parameter vegetation index
原文传递
苹果花期的冠层高光谱特征研究 被引量:9
5
作者 朱西存 赵庚星 +2 位作者 雷彤 李希灿 陈志强 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2009年第10期2708-2712,共5页
系统分析苹果花期冠层高光谱特征,探明其敏感光谱波段,为大面积苹果树信息提取与营养状况的遥感反演等提供理论依据。利用ASDFieldSpec3便携式地物光谱仪实测的120个苹果花期的冠层高光谱数据,在分析了不同累计样本容量对花期冠层高光... 系统分析苹果花期冠层高光谱特征,探明其敏感光谱波段,为大面积苹果树信息提取与营养状况的遥感反演等提供理论依据。利用ASDFieldSpec3便携式地物光谱仪实测的120个苹果花期的冠层高光谱数据,在分析了不同累计样本容量对花期冠层高光谱特征影响的基础上,采用方差分析的方法,明确了苹果花期的冠层高光谱特征及反映花期冠层高光谱的敏感波段。结果表明,随着累计样本容量的增加,苹果花期的高光谱曲线趋于稳定、平滑。在550nm绿峰处和760~1300nm的反射高原区,反射率随着花量的增多而减小,在670nm的红谷处,反射率随着花量的增多而增大;在350~400nm,400~500nm,600~680nm,760~1300nm波段的方差分析结果极显著,是反映花期冠层光谱的敏感波段;随着花量的增多,红边位置、红边斜率和红边面积有逐渐减小的趋势。 展开更多
关键词 苹果花期 高光谱 冠层 红边
下载PDF
Effects of RapidEye Imagery's Red-edge Band and Vegetation Indices on Land Cover Classification in an Arid Region 被引量:9
6
作者 LI Xianju CHEN Gang +3 位作者 LIU Jingyi CHEN Weitao CHENG Xinwen LIAO Yiwei 《Chinese Geographical Science》 SCIE CSCD 2017年第5期827-835,共9页
Land cover classification(LCC) in arid regions is of great significance to the assessment, prediction, and management of land desertification. Some studies have shown that the red-edge band of RapidE ye images was eff... Land cover classification(LCC) in arid regions is of great significance to the assessment, prediction, and management of land desertification. Some studies have shown that the red-edge band of RapidE ye images was effective for vegetation identification and could improve LCC accuracy. However, there has been no investigation of the effects of RapidE ye images' red-edge band and vegetation indices on LCC in arid regions where there are spectrally similar land covers mixed with very high or low vegetation coverage information and bare land. This study focused on a typical inland arid desert region located in Dunhuang Basin of northwestern China. First, five feature sets including or excluding the red-edge band and vegetation indices were constructed. Then, a land cover classification system involving plant communities was developed. Finally, random forest algorithm-based models with different feature sets were utilized for LCC. The conclusions drawn were as follows: 1) the red-edge band showed slight contribution to LCC accuracy; 2) vegetation indices had a significant positive effect on LCC; 3) simultaneous addition of the red-edge band and vegetation indices achieved a significant overall accuracy improvement(3.46% from 86.67%). In general, vegetation indices had larger effect than the red-edge band, and simultaneous addition of them significantly increased the accuracy of LCC in arid regions. 展开更多
关键词 arid region land cover classification RapidEye red-edge band vegetation indices random forest Dunhuang Basin
下载PDF
An entirely new approach based on remote sensing data to calculate the nitrogen nutrition index of winter wheat 被引量:6
7
作者 ZHAO Yu WANG Jian-wen +5 位作者 CHEN Li-ping FU Yuan-yuan ZHU Hong-chun FENG Hai-kuan XU Xin-gang LI Zhen-hai 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第9期2535-2551,共17页
The nitrogen nutrition index(NNI)is a reliable indicator for diagnosing crop nitrogen(N)status.However,there is currently no specific vegetation index for the NNI inversion across multiple growth periods.To overcome t... The nitrogen nutrition index(NNI)is a reliable indicator for diagnosing crop nitrogen(N)status.However,there is currently no specific vegetation index for the NNI inversion across multiple growth periods.To overcome the limitations of the traditional direct NNI inversion method(NNI_(T1))of the vegetation index and traditional indirect NNI inversion method(NNI_(T2))by inverting intermediate variables including the aboveground dry biomass(AGB)and plant N concentration(PNC),this study proposed a new NNI remote sensing index(NNI_(RS)).A remote-sensing-based critical N dilution curve(Nc_(_RS))was set up directly from two vegetation indices and then used to calculate NNI_(RS).Field data including AGB,PNC,and canopy hyperspectral data were collected over four growing seasons(2012–2013(Exp.1),2013–2014(Exp.2),2014–2015(Exp.3),2015–2016(Exp.4))in Beijing,China.All experimental datasets were cross-validated to each of the NNI models(NNI_(T1),NNI_(T2)and NNI_(RS)).The results showed that:(1)the NNI_(RS)models were represented by the standardized leaf area index determining index(sLAIDI)and the red-edge chlorophyll index(CI_(red edge))in the form of NNI_(RS)=CI_(red edge)/(a×sLAIDI~b),where"a"equals 2.06,2.10,2.08 and 2.02 and"b"equals 0.66,0.73,0.67 and 0.62 when the modeling set data came from Exp.1/2/4,Exp.1/2/3,Exp.1/3/4,and Exp.2/3/4,respectively;(2)the NNI_(RS)models achieved better performance than the other two NNI revised methods,and the ranges of R2 and RMSE were 0.50–0.82 and 0.12–0.14,respectively;(3)when the remaining data were used for verification,the NNI_(RS)models also showed good stability,with RMSE values of 0.09,0.18,0.13 and 0.10,respectively.Therefore,it is concluded that the NNI_(RS)method is promising for the remote assessment of crop N status. 展开更多
关键词 nitrogen nutrition index(NNI) critical nitrogen dilution curve standardized leaf area index determining index(s LAIDI) the red-edge chlorophyll index(CI_(red edge))
下载PDF
Leaf chlorophyll content retrieval of wheat by simulated RapidEye, Sentinel-2 and EnMAP data 被引量:5
8
作者 CUI Bei ZHAO Qian-jun +3 位作者 HUANG Wen-jiang SONG Xiao-yu YE Hui-chun ZHOU Xian-feng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第6期1230-1245,共16页
Leaf chlorophyll content(LCC)is an important physiological indicator of the actual health status of individual plants.An accurate estimation of LCC can therefore provide valuable information for precision field manage... Leaf chlorophyll content(LCC)is an important physiological indicator of the actual health status of individual plants.An accurate estimation of LCC can therefore provide valuable information for precision field management.Red-edge information from hyperspectral data has been widely used to estimate crop LCC.However,after the advent of red-edge bands in satellite imagery,no systematic evaluation of the performance of satellite data has been conducted.Toward this end,we analyze herein the performance of winter wheat LCC retrieval of currant and forthcoming satellites(RapidEye,Sentinel-2 and EnMAP)and their new red-edge bands by using partial least squares regression(PLSR)and a vegetation-indexbased approach.These satellite spectral data were obtained by resampling ground-measured hyperspectral data under various field conditions and according to specific spectral response functions and spectral resolution.The results showed:1)This study confirmed that RapidEye,Sentinel-2 and EnMAP data are suitable for winter wheat LCC retrieval.For the PLSR approach,Sentinel-2 data provided more accurate estimates of LCC(R2=0.755,0.844,0.805 for 2002,2010,and 2002+2010)than do RapidEye data(R2=0.689,0.710,0.707 for 2002,2010,and 2002+2010)and EnMAP data(R2=0.735,0.867,0.771 for 2002,2010,and 2002+2010).For index-based approaches,the MERIS terrestrial chlorophyll index,which is a vegetation index with two red-edge bands,was the most sensitive and robust index for LCC for both the Sentinel-2 and EnMAP data(R2≥0.628),and the indices(NDRE1,SRRE1 and CIRE1)with a single red-edge band were the most sensitive and robust indices for the RapidEye data(R2≥0.420);2)According to the analysis of the effect of the wavelength and number of used red-edge spectral bands on LCC retrieval,the short-wavelength red-edge bands(from 699 to 734 nm)provided more accurate predictions when using the PLSR approach,whereas the long-wavelength red-edge bands(740 to 783 nm)gave more accurate predictions when using the vegetation indice(VI)approach.In additi 展开更多
关键词 LEAF CHLOROPHYLL content RapidEye Sentinel-2 EnMAP red-edge band
下载PDF
高分六号宽幅遥感影像在复杂山区地物分类中的应用
9
作者 张禄明 王宝江 +2 位作者 孙洪 钟昆 李丹 《安徽农学通报》 2024年第17期63-68,共6页
为评估其在多类地物分类中的有效性,本研究利用GF-6宽幅遥感影像(WFV),对四川西南部复杂山区开展大尺度地物分类研究。通过波段组合和植被指数计算,提升对植被健康状况的监测能力。特别是红边波段(B5)和黄波段(B8)的引入,为植被和土地... 为评估其在多类地物分类中的有效性,本研究利用GF-6宽幅遥感影像(WFV),对四川西南部复杂山区开展大尺度地物分类研究。通过波段组合和植被指数计算,提升对植被健康状况的监测能力。特别是红边波段(B5)和黄波段(B8)的引入,为植被和土地利用分类带来了技术优势。在监督分类方法方面,采用了马氏距离、极大似然法、卷积神经网络(CNN)和支持向量机(SVM)4种方法。结果表明,SVM在处理高维光谱数据和复杂地形条件下表现出色,分类精度最高。马氏距离和极大似然法的分类精度较低,主要受数据假设和样本量限制的影响,而神经网络方法的表现不佳,主要是由于训练样本数量和多样性的不足,导致模型的泛化能力不强。综合以上结果,GF-6WFV影像在地物分类中展现出优异性能,尤其在精准农业和林业管理方面。未来研究应关注多源遥感数据的整合,优化算法以提升分类精度,并减少计算资源消耗。 展开更多
关键词 山区地物分类 宽幅遥感影像 多光谱信息 红边波段 支持向量机监督分类
下载PDF
基于多光谱无人机及机器学习的林木火灾受损信息提取研究
10
作者 崔中耀 赵凤君 +2 位作者 赵爽 费腾 叶江霞 《自然灾害学报》 CSCD 北大核心 2024年第1期99-108,共10页
为探究中小尺度森林火灾过火区域林木受损程度的准确提取,以2020年5月13日云南省安宁市青龙街道森林火场为研究对象,通过精灵4多光谱无人机获取火场影像,借助红边及近红外波段构建植被指数,结合纹理指标建立影像特征参数,利用机器学习... 为探究中小尺度森林火灾过火区域林木受损程度的准确提取,以2020年5月13日云南省安宁市青龙街道森林火场为研究对象,通过精灵4多光谱无人机获取火场影像,借助红边及近红外波段构建植被指数,结合纹理指标建立影像特征参数,利用机器学习中常用的随机森林(random forest,RF)和支持向量机(support vector machine,SVM)方法提取烧毁、烧死、烧伤及未伤林木空间分布信息,并探讨2种方法对于多光谱无人机遥感林木受损信息提取的精度。结果表明:不同受损程度的林木在红边波段和近红外波段范围内反射率差异较大,但以此构建的植被指数分离能力不同,呈现NDVI>mSR rededge>NDVI rededge>PSRI。基于影像光谱及纹理等多特征的林木受损程度提取方法中,RF精度明显优于SVM,总精度达89.76%,Kappa系数为0.85,相比SVM分别提升4.41%和6.25%。多光谱无人机可用于小范围典型森林火灾区域林木受损程度信息精确提取,而对于大面积范围的林木火灾受损信息的精确提取,综合多光谱无人机数据及多光谱卫星影像数据是解决问题的方向。 展开更多
关键词 多光谱无人机 机器学习 森林火灾 林木受损 红边
下载PDF
基于KNN-FIFS的内蒙古根河森林郁闭度遥感估测研究 被引量:6
11
作者 孙珊珊 田昕 +3 位作者 谷成燕 韩宗涛 王崇阳 张兆鹏 《遥感技术与应用》 CSCD 北大核心 2019年第5期959-969,共11页
为探索国产高分一号宽幅(GF-1 Wide Field of View,GF-1 WFV)数据以及具有宽覆盖、红边波段(Red-Edge band,RE)的高分六号(GF-6)卫星数据在森林郁闭度(Forest Canopy Closure,FCC)定量反演中的潜力,本研究以GF-1 WFV多光谱数据为基础,... 为探索国产高分一号宽幅(GF-1 Wide Field of View,GF-1 WFV)数据以及具有宽覆盖、红边波段(Red-Edge band,RE)的高分六号(GF-6)卫星数据在森林郁闭度(Forest Canopy Closure,FCC)定量反演中的潜力,本研究以GF-1 WFV多光谱数据为基础,添加哨兵2号(Sentinel-2A)红边波段,模拟GF-6红边波段特性,并提取相关纹理信息(Texture Information,TI)、植被指数(Vegetation Index,VI)和红边指数(Red-edge Index,RI),同时添加太阳入射角的余弦值cosi和1/cosi进一步探究了地形因素(Topographic Factors,TF)对FCC估测的影响,利用快速迭代特征选择的k-NN(kNearest Neighbor with Fast Iterative Features Selection,KNN-FIFS)模型,实现了内蒙古大兴安岭根河研究区FCC的定量反演,并对比逐步多元线性回归(Stepwise Multiple Linear Regressions,SMLR)和支持向量机(Support Vector Machine,SVM)估测结果。通过44块调查样地实测数据验证发现:基于GF-1 WFV估测的FCC与实测数据具有很好的一致性,R2=0.52,RMSE=0.08;GF-1 WFV+VI+TI估测结果为R2=0.56,RMSE=0.08;GF-1 WFV+RE+RI+TI的精度明显提高,R2=0.63,RMSE=0.07;GF-1 WFV+RE+RI+TI+TF的精度最高,R2=0.68,RMSE=0.07,并高于SMLR(R2=0.39,RMSE=0.10)和SVM(R2=0.49,RMSE=0.10)方法。KNN-FIFS方法比SMLR和SVM方法更适用于FCC遥感估测,且添加红边信息经地形校正后,能有效提高FCC的估测精度。 展开更多
关键词 森林郁闭度 高分一号 高分六号 红边 KNN-FIFS 根河森林
原文传递
不同演替阶段典型树种幼苗对酸胁迫响应的高光谱监测 被引量:4
12
作者 程苗苗 江洪 +6 位作者 陈健 余树全 宋晓东 王彬 谢小赞 郭徵 江子山 《生态学报》 CAS CSCD 北大核心 2009年第11期5953-5962,共10页
通过在为期2a的可控酸雨试验下对处于不同演替阶段的典型树种幼苗的高光谱测定,得到不同梯度酸雨下各树种的叶片光谱反应曲线及相应叶片的生理生化参量。对测定的3种树种的叶片叶绿素含量及一阶导数光谱进行分析,发现随着酸雨浓度的增加... 通过在为期2a的可控酸雨试验下对处于不同演替阶段的典型树种幼苗的高光谱测定,得到不同梯度酸雨下各树种的叶片光谱反应曲线及相应叶片的生理生化参量。对测定的3种树种的叶片叶绿素含量及一阶导数光谱进行分析,发现随着酸雨浓度的增加,处于演替前期的先锋树种马尾松的幼苗叶绿素含量呈现增加趋势,而处于演替中、后期的木荷和青冈幼苗叶绿素含量则呈现减少趋势;随着试验时间的推移,马尾松的红边位置呈现"红移"趋势,其中pH2.5处理下的"红移"趋势较明显;而木荷和青冈的红边位置则呈现不同程度的"蓝移"趋势。较长时期高浓度酸胁迫对先锋树种马尾松的幼苗生长有一定促进作用,而对演替中期和后期树种木荷和青冈幼苗生长则主要表现为抑制作用。 展开更多
关键词 亚热带树种 演替 酸胁迫 高光谱 红边
下载PDF
Assessing Landsat-8 and Sentinel-2 spectral-temporal features for mapping tree species of northern plantation forests in Heilongjiang Province,China 被引量:2
13
作者 Mengyu Wang Yi Zheng +7 位作者 Chengquan Huang Ran Meng Yong Pang Wen Jia Jie Zhou Zehua Huang Linchuan Fang Feng Zhao 《Forest Ecosystems》 SCIE CSCD 2022年第3期344-356,共13页
Background:Accurate mapping of tree species is highly desired in the management and research of plantation forests,whose ecosystem services are currently under threats.Time-series multispectral satellite images,e.g.,f... Background:Accurate mapping of tree species is highly desired in the management and research of plantation forests,whose ecosystem services are currently under threats.Time-series multispectral satellite images,e.g.,from Landsat-8(L8)and Sentinel-2(S2),have been proven useful in mapping general forest types,yet we do not know quantitatively how their spectral features(e.g.,red-edge)and temporal frequency of data acquisitions(e.g.,16-day vs.5-day)contribute to plantation forest mapping to the species level.Moreover,it is unclear to what extent the fusion of L8 and S2 will result in improvements in tree species mapping of northern plantation forests in China.Methods:We designed three sets of classification experiments(i.e.,single-date,multi-date,and spectral-temporal)to evaluate the performances of L8 and S2 data for mapping keystone timber tree species in northern China.We first used seven pairs of L8 and S2 images to evaluate the performances of L8 and S2 key spectral features for separating these tree species across key growing stages.Then we extracted the spectral-temporal features from all available images of different temporal frequency of data acquisition(i.e.,L8 time series,S2 time series,and fusion of L8 and S2)to assess the contribution of image temporal frequency on the accuracy of tree species mapping in the study area.Results:1)S2 outperformed L8 images in all classification experiments,with or without the red edge bands(0.4%–3.4%and 0.2%–4.4%higher for overall accuracy and macro-F1,respectively);2)NDTI(the ratio of SWIR1 minus SWIR2 to SWIR1 plus SWIR2)and Tasseled Cap coefficients were most important features in all the classifications,and for time-series experiments,the spectral-temporal features of red band-related vegetation indices were most useful;3)increasing the temporal frequency of data acquisition can improve overall accuracy of tree species mapping for up to 3.2%(from 90.1%using single-date imagery to 93.3%using S2 time-series),yet similar overall accuracies were achieved using S2 time 展开更多
关键词 Tree species mapping Plantation forests red-edge features Temporal frequency of data acquisition Fusion of Landsat-8 and Sentinel-2
下载PDF
Estimation of transpiration coefficient and aboveground biomass in maize using time-series UAV multispectral imagery 被引量:2
14
作者 Guomin Shao Wenting Han +5 位作者 Huihui Zhang Yi Wang Liyuan Zhang Yaxiao Niu Yu Zhang Pei Cao 《The Crop Journal》 SCIE CSCD 2022年第5期1376-1385,共10页
Estimating spatial variation in crop transpiration coefficients(CTc) and aboveground biomass(AGB)rapidly and accurately by remote sensing can facilitate precision irrigation management in semiarid regions. This study ... Estimating spatial variation in crop transpiration coefficients(CTc) and aboveground biomass(AGB)rapidly and accurately by remote sensing can facilitate precision irrigation management in semiarid regions. This study developed and assessed a novel machine learning(ML) method for estimating CTc and AGB using time-series unmanned aerial vehicle(UAV)-based multispectral vegetation indices(VIs)of maize under several irrigation treatments at the field scale. Four ML regression methods: multiple linear regression(MLR), support vector regression(SVR), random forest regression(RFR), and adaptive boosting regression(ABR), were used to address the complex relationship between CTcand VIs. AGB was then estimated using exponential, logistic, sigmoid, and linear equations because of their clear mathematical formulations based on the optimal CTcestimation model. The UAV VIs-derived CTcusing the RFR estimation model yielded the highest accuracy(R^(2)= 0.91, RMSE = 0.0526, and n RMSE = 9.07%). The normalized difference red-edge index, transformed chlorophyll absorption in reflectance index, and simple ratio contributed significantly to the RFR-based CTcmodel. The accuracy of AGB estimation using nonlinear methods was higher than that using the linear method. The exponential method yielded the highest accuracy(R^(2)= 0.76, RMSE = 282.8 g m, and n RMSE = 39.24%) in both the 2018 and 2019 growing seasons. The study confirms that AGB estimation models based on cumulative CTcperformed well under several irrigation treatments using high-resolution time-series UAV multispectral VIs and can support irrigation management with high spatial precision at a field scale. 展开更多
关键词 Crop transpiration Normalized difference red-edge index Unmanned aerial vehicles Random forest regression BIOMASS
下载PDF
亚热带典型树种对模拟酸雨胁迫的高光谱响应 被引量:2
15
作者 时启龙 江洪 +1 位作者 陈健 张倩倩 《生态学报》 CAS CSCD 北大核心 2012年第18期5621-5629,共9页
对亚热带地区6种典型树种幼苗在不同模拟酸雨梯度下的光谱响应特征进行了研究。结果表明,针叶树种和阔叶树种对酸雨敏感性具有明显差异。针叶树种马尾松、杉木和香榧对酸雨敏感性高于阔叶树种刨花楠、香樟和杨梅。针叶树种内部,马尾松... 对亚热带地区6种典型树种幼苗在不同模拟酸雨梯度下的光谱响应特征进行了研究。结果表明,针叶树种和阔叶树种对酸雨敏感性具有明显差异。针叶树种马尾松、杉木和香榧对酸雨敏感性高于阔叶树种刨花楠、香樟和杨梅。针叶树种内部,马尾松和杉木叶绿素含量随酸雨浓度变化的幅度明显高于香榧;而阔叶树种内部,刨花楠、香樟和杨梅三者之间无显著差别。马尾松、香樟和香榧不能承受长时间高浓度酸雨胁迫,叶绿素含量呈先增加后减少趋势,杉木则先减少后增加,杨梅能承受长时间高浓度酸雨胁迫,pH值2.5处理下叶绿素含量高于pH值5.6处理。刨花楠4期试验中叶绿素含量变化无明显规律。各受试植物光谱反射率红边位置与其叶绿素含量变化规律基本一致。针叶树种马尾松和香榧主要表现为"蓝移",杉木则先"蓝移"后"红移",表现出对高浓度酸雨长时间的抗性;阔叶树种香樟先"红移"后"蓝移",对高浓度模拟酸雨表现出先促进后抑制现象,杨梅光谱反射率一阶导数曲线比较平缓,无明显"红移"和"蓝移"现象,刨花楠则"红移"和"蓝移"交替出现,与其叶绿素含量变化相一致,对酸雨敏感性不明显。 展开更多
关键词 酸雨 叶绿素 光谱 红边 一阶导数
下载PDF
Remote sensing retrieval of winter wheat leaf area index and canopy chlorophyll density at different growth stages 被引量:1
16
作者 Naichen Xing Wenjiang Huang +4 位作者 Huichun Ye Yingying Dong Weiping Kong Yu Ren Qiaoyun Xie 《Big Earth Data》 EI 2022年第4期580-602,共23页
Leaf area index(LAI)and canopy chlorophyll density(CCD)are key indicators of crop growth status.In this study,we compared several vegetation indices and their red-edge modified counterparts to evaluate the optimal red... Leaf area index(LAI)and canopy chlorophyll density(CCD)are key indicators of crop growth status.In this study,we compared several vegetation indices and their red-edge modified counterparts to evaluate the optimal red-edge bands and the best vegetation index at different growth stages.The indices were calculated with Sentinel-2 MSI data and hyperspectral data.Their performances were validated against ground measurements using R2,RMSE,and bias.The results suggest that indices computed with hyperspectral data exhibited higher R2 than multispectral data at the late jointing stage,head emergence stage,and filling stage.Furthermore,rededge modified indices outperformed the traditional indices for both data genres.Inversion models indicated that the indices with short red-edge wavelengths showed better estimation at the early joint-ing and milk development stage,while indices with long red-edge wavelength estimate the sought variables better at the middle three stages.The results were consistent with the red-edge inflec-tion point shift at different growth stages.The best indices for Sentinel-2 LAI retrieval,Sentinel-2 CCD retrieval,hyperspectral LAI retrieval,and hyperspectral CCD retrieval at five growth stages were determined in the research.These results are beneficial to crop trait monitoring by providing references for crop biophysical and bio-chemical parameters retrieval. 展开更多
关键词 Growth stages HYPERSPECTRAL red-edge band Sentinel-2 vegetation index
原文传递
Estimation of chlorophyll content in pepper leaves using spectral transmittance red-edge parameters
17
作者 Shuai Huang You Wu +3 位作者 Qinglan Wang Jingli Liu Qingyan Han Jianfeng Wang 《International Journal of Agricultural and Biological Engineering》 SCIE CAS 2022年第5期85-90,共6页
The objective of this work was to monitor the growth status of pepper and provide precise guidance on fertilization through non-destructive detection methods for chlorophyll content based on spectral transmittance.The... The objective of this work was to monitor the growth status of pepper and provide precise guidance on fertilization through non-destructive detection methods for chlorophyll content based on spectral transmittance.The analysis of the narrower red-edge spectral region(680-760 nm)reduced the requirements for light sources and light detection sensors,and provided a simpler and more accurate method of data acquisition for the process of developing instruments for estimating chlorophyll content in leaves.The red-edge region of spectral transmittance was demonstrated to be closely related to chlorophyll content.Regression models for estimating chlorophyll content with seven different methods were developed using the four red-edge parameters extracted from the red-edge region.The problems of multicollinearity of red-edge parameters and errors in model coefficients were solved by the ridge regression method in the process of building a multivariate regression model.The results indicated that the ridge regression method reduces the errors of the model coefficients and constant terms while improving the detection accuracy,thus the ridge regression model could estimate the leaf chlorophyll content more accurately and repeatedly. 展开更多
关键词 pepper leaf chlorophyll content red-edge parameters ridge regression
原文传递
Sentinel-2数据的冬小麦地上干生物量估算及评价 被引量:68
18
作者 郑阳 吴炳方 张淼 《遥感学报》 EI CSCD 北大核心 2017年第2期318-328,共11页
作物生物量快速精确的监测对于农业资源的合理利用与农田的精准管理具有重要意义。近年来,遥感技术因其独特的优势已被广泛用于作物生物量的估算中。本文主要针对不同宽波段植被指数在冬小麦生物量(文中的生物量均是指地上干生物量)估... 作物生物量快速精确的监测对于农业资源的合理利用与农田的精准管理具有重要意义。近年来,遥感技术因其独特的优势已被广泛用于作物生物量的估算中。本文主要针对不同宽波段植被指数在冬小麦生物量(文中的生物量均是指地上干生物量)估算方面的表现进行探索。首先利用欧洲空间局最新的Sentinel-2A卫星数据提取出17种常见的植被指数,之后分别构建其与相应时期内采集的冬小麦地上生物量间的最优估算模型,通过分析两者间的相关性与敏感性,获取适宜进行生物量估算的指数。最后,绘制了研究区的生物量空间分布图。结果表明,所选的植被指数均与生物量显著相关。其中,红边叶绿素指数(CI_(re))与生物量的估算精度最高(决定性系数R^2为0.83;均方根误差RMSE为180.29 g·m^(–2))。虽然相关性较高,但部分指数,如归一化差值植被指数(NDVI)等在生物量较高时会出现饱和现象,从而导致生物量的低估。而加入红边波段的指数不仅能够延缓指数的饱和趋势,而且能够提高反演精度。此外,通过敏感性分析发现,归一化差值指数和比值指数分别在作物生长的早期和中后期对生物量的变化保持较高的敏感性。由于红边比值指数(SR_(re))和MERIS叶绿素敏感指数(MTCI)在冬小麦全生长季内一直对生物量的变化保持高灵敏性,二者是生物量估算中最为稳定的指数。 展开更多
关键词 Sentinel-2 冬小麦 植被指数 地上生物量 红边波段
原文传递
基于特征优选随机森林算法的农耕区土地利用分类 被引量:57
19
作者 王李娟 孔钰如 +3 位作者 杨小冬 徐艺 梁亮 王树果 《农业工程学报》 EI CAS CSCD 北大核心 2020年第4期244-250,共7页
为了提高农耕区土地利用分类精度,该文采用较高空间分辨率和丰富光谱信息的Sentinel-2数据生成光谱特征、无红边波段的植被指数、红边指数和纹理特征4种基本特征变量,并对以上特征变量优选后进行特征重要性排序,进而构建7种特征组合方案... 为了提高农耕区土地利用分类精度,该文采用较高空间分辨率和丰富光谱信息的Sentinel-2数据生成光谱特征、无红边波段的植被指数、红边指数和纹理特征4种基本特征变量,并对以上特征变量优选后进行特征重要性排序,进而构建7种特征组合方案,基于随机森林算法和支持向量机对农耕区土地利用信息进行提取并对比验证分类精度。研究结果表明:通过特征优选的随机森林算法进行土地利用信息提取效果最佳,总体精度达到88.24%,Kappa系数为0.84,精度优于相同特征变量下的支持向量机分类方法。该方法能够有效提高农耕区土地利用分类精度,可为土地资源监测、管理提供技术支持和理论参考。 展开更多
关键词 随机森林算法 土地利用分类 农耕区 特征优选 Sentinel-2 红边指数
下载PDF
高分六号红边特征的农作物识别与评估 被引量:47
20
作者 梁继 郑镇炜 +2 位作者 夏诗婷 张晓彤 唐媛媛 《遥感学报》 EI CSCD 北大核心 2020年第10期1168-1179,共12页
红边作为植被敏感波段,其红边特征的运用是遥感识别农作物并实现精准农业的高新手段之一。以黑龙江松嫩平原北部为研究区,以国内首个提供红边波段的多光谱高分六号影像和玉米、大豆、水稻总计82859个作物样本同时作为研究对象,从以下几... 红边作为植被敏感波段,其红边特征的运用是遥感识别农作物并实现精准农业的高新手段之一。以黑龙江松嫩平原北部为研究区,以国内首个提供红边波段的多光谱高分六号影像和玉米、大豆、水稻总计82859个作物样本同时作为研究对象,从以下几个方面研究了红边波段和红边指数波段等红边特征在农作物识别中的表现,并评估了农作物的识别精度。(1)通过作物样本辐射亮度值的统计特征,初步显示了在两红边波段0.710μm和0.750μm处有比其他波段更好的区分;(2)根据传统归一化植被指数形式构建了红边归一化植被指数NDVI710和NDVI750,综合两指数在J-M距离表征的作物样本类别区分度上比传统NDVI更显著;(3)通过多种手段筛选了有效波段并且制定了支持向量机(SVM)框架下4种农作物识别的分类策略,分别在5∶5、6∶4、7∶3、8∶2、9∶1等5套随机样本分割方案下完成研究区域农作物的分类预测。在这20类分类精度中kappa系数均高于0.9609,总体精度高于0.9742;列向上5∶5分割方案的精度最高,8∶2的精度最低;横向上分类精度排序如下:SVM-RFE>SVM-RF>SVM-有红边波段>SVM-无红边波段,该结果表明了红边指数和红边波段的参与显著地提高了作物的识别精度;(4)由于水域等其他样本的缺少,SVM-RFE方法和SVM-RF方法的分类图像均存在少量错分现象。但从分类精度和图像细节展示上来看,SVM-RFE方法要优于SVM-RF方法,二者分类图像的交叉验证中kappa系数为0.8060,总体精度为0.8743。总之,高分六号红边特征在作物识别中表现优越,使得识别精度显著提高。后续研究者可开发更多与红边相关的植被指数,充分发挥红边特征在精准农业中的作用。 展开更多
关键词 遥感 高分六号 红边波段 支持向量机 随机森林法 递归特征消除法
原文传递
上一页 1 2 15 下一页 到第
使用帮助 返回顶部