Sluggish reaction kinetics of oxygen evolution reaction(OER), resulting from multistep proton-coupled electron transfer and spin constriction, limits overall efficiency for most reported catalysts. Herein, using model...Sluggish reaction kinetics of oxygen evolution reaction(OER), resulting from multistep proton-coupled electron transfer and spin constriction, limits overall efficiency for most reported catalysts. Herein, using modeled ZnFe_(2-x)Ni_xO_(4)(0 ≤ x ≤ 0.4) spinel oxides, we aim to develop better OER electrocatalyst through combining the construction of ferromagnetic(FM) ordering channels and generation of highly active reconstructed species. The number of symmetry-breaking Fe–O–Ni structure links to the formation of FM ordering electron transfer channels. Meanwhile, as the number of Ni^(3+)increases, more ligand holes are formed, beneficial for redirecting surface reconstruction. The electro-activated ZnFe_(1.6)Ni_(0.4)O_(4) shows the highest specific activity, which is 13 and 2.5 times higher than that of ZnFe_(2)O_(4) and unactivated ZnFe_(1.6)Ni_(0.4)O_(4), and even superior to the benchmark IrO_(2) under the overpotential of 350 mV. Applying external magnetic field can make electron spin more aligned, and the activity can be further improved to 39 times of ZnFe_(2)O_(4). We propose that intriguing FM exchange-field interaction at FM/paramagnetic interfaces can penetrate FM ordering channels into reconstructed oxyhydroxide layers, thereby activating oxyhydroxide layers as spin-filter to accelerate spin-selective electron transfer. This work provides a new guideline to develop highly efficient spintronic catalysts for water oxidation and other spin-forbidden reactions.展开更多
Efficient metal recovery from industrial wastewater facilitates addressing of the environmental hazards and resource requirements of heavy metals.The conventional electrodeposition recovery method is hampered by the l...Efficient metal recovery from industrial wastewater facilitates addressing of the environmental hazards and resource requirements of heavy metals.The conventional electrodeposition recovery method is hampered by the limitations of interfacial ion transport in charge-transfer reactions,creating challenges for simultaneous rapid and high-quality metal recovery.Therefore,we proposed integrating a transient electric field(TE)and swirling flow(SF)to synchronously enhance bulk mass transfer and promote interfacial ion transport.We investigated the effects of the operation mode,transient frequency,and flow rate on metal recovery,enabling determination of the optimal operating conditions for rapid and efficient sequential recovery of Cu in TE&SF mode.These conditions included low and high electric levels of 0 and 4 V,a 50%duty cycle,1 kHz frequency,and 400 L·h^(-1)flow rate.The kinetic coefficients of TE&SF electrodeposition were 3.5-4.3 and 1.37-1.97 times that of single TE and SF electrodeposition,respectively.Simulating the deposition process under TE and SF conditions confirmed the efficient concurrence of interfacial ion transport and charge transfer under TE and SF synergy,which achieved rapid and highquality metal recovery.Therefore,the combined deposition strategy is considered an effective technique for reducing metal pollution and promoting resource recycling.展开更多
Electrocatalytic reduction of carbon dioxide(CO_(2))to multicarbon(C2+)products involves intricate multiple protons and electron transfer of C-C coupling,which is dictated by not only the intrinsic reactivity but also...Electrocatalytic reduction of carbon dioxide(CO_(2))to multicarbon(C2+)products involves intricate multiple protons and electron transfer of C-C coupling,which is dictated by not only the intrinsic reactivity but also the spin states of electrons in the catalyst.Here,we observe spin-enhanced CO_(2)reduction(CO_(2)RR)electrocatalytic activity on an oxidederived copper(OD-Cu)catalyst due to the existence of a specific Cu*site that carried the magnetic moments.Due to the correlation of magnetic and catalytic properties in OD-Cu,the current density through the OD-Cu electrode increases by nearly 10%at 350 mT.The field strength and angle dependence of such magnetic field effect(MFE),together with the time-resolved measurements proved that it originated from the alignment of magnetic moments on Cu*sites.The MFE on the electrocatalytic process enabled an enhancement(up to 15%)of the CO_(2)RR Faradaic efficiency using the OD-Cu catalyst.Importantly,the enhancement was attributed to the spinantiparallel alignment of electrons to promote C-C coupling on asymmetric Cu*-Cu sites;consequently,the optimal bias was reduced by∼0.2 V under the magnetic field for C2 products with Faradaic efficiency>30%and selectivity>75%.Our work uncovers a new paradigmfor spin-enhanced catalysis applicable to a broad range of chemical reactions involving spin singlet products.展开更多
基金supported by the National Key R&D Program of China (2020YFA0710000)the National Natural Science Foundation of China (22278307, 22008170, 21978200, 22161142002, and 22121004)+2 种基金the Applied Basic Research Program of Qinghai Province (2023-ZJ-701)the Haihe Laboratory of Sustainable Chemical Transformationsthe Tianjin Research Innovation Project for Postgraduate Students (2022BKYZ035)。
文摘Sluggish reaction kinetics of oxygen evolution reaction(OER), resulting from multistep proton-coupled electron transfer and spin constriction, limits overall efficiency for most reported catalysts. Herein, using modeled ZnFe_(2-x)Ni_xO_(4)(0 ≤ x ≤ 0.4) spinel oxides, we aim to develop better OER electrocatalyst through combining the construction of ferromagnetic(FM) ordering channels and generation of highly active reconstructed species. The number of symmetry-breaking Fe–O–Ni structure links to the formation of FM ordering electron transfer channels. Meanwhile, as the number of Ni^(3+)increases, more ligand holes are formed, beneficial for redirecting surface reconstruction. The electro-activated ZnFe_(1.6)Ni_(0.4)O_(4) shows the highest specific activity, which is 13 and 2.5 times higher than that of ZnFe_(2)O_(4) and unactivated ZnFe_(1.6)Ni_(0.4)O_(4), and even superior to the benchmark IrO_(2) under the overpotential of 350 mV. Applying external magnetic field can make electron spin more aligned, and the activity can be further improved to 39 times of ZnFe_(2)O_(4). We propose that intriguing FM exchange-field interaction at FM/paramagnetic interfaces can penetrate FM ordering channels into reconstructed oxyhydroxide layers, thereby activating oxyhydroxide layers as spin-filter to accelerate spin-selective electron transfer. This work provides a new guideline to develop highly efficient spintronic catalysts for water oxidation and other spin-forbidden reactions.
基金supported financially by the National Natural Science Foundation of China(52221004).
文摘Efficient metal recovery from industrial wastewater facilitates addressing of the environmental hazards and resource requirements of heavy metals.The conventional electrodeposition recovery method is hampered by the limitations of interfacial ion transport in charge-transfer reactions,creating challenges for simultaneous rapid and high-quality metal recovery.Therefore,we proposed integrating a transient electric field(TE)and swirling flow(SF)to synchronously enhance bulk mass transfer and promote interfacial ion transport.We investigated the effects of the operation mode,transient frequency,and flow rate on metal recovery,enabling determination of the optimal operating conditions for rapid and efficient sequential recovery of Cu in TE&SF mode.These conditions included low and high electric levels of 0 and 4 V,a 50%duty cycle,1 kHz frequency,and 400 L·h^(-1)flow rate.The kinetic coefficients of TE&SF electrodeposition were 3.5-4.3 and 1.37-1.97 times that of single TE and SF electrodeposition,respectively.Simulating the deposition process under TE and SF conditions confirmed the efficient concurrence of interfacial ion transport and charge transfer under TE and SF synergy,which achieved rapid and highquality metal recovery.Therefore,the combined deposition strategy is considered an effective technique for reducing metal pollution and promoting resource recycling.
基金supported by the National Natural Science Foundation of China(grant no.21873105)the National Key Research and Development Program of China(grant no.2020YFA0710303)the CAS Project for Young Scientists in Basic Research(grant no.YSBR-004).
文摘Electrocatalytic reduction of carbon dioxide(CO_(2))to multicarbon(C2+)products involves intricate multiple protons and electron transfer of C-C coupling,which is dictated by not only the intrinsic reactivity but also the spin states of electrons in the catalyst.Here,we observe spin-enhanced CO_(2)reduction(CO_(2)RR)electrocatalytic activity on an oxidederived copper(OD-Cu)catalyst due to the existence of a specific Cu*site that carried the magnetic moments.Due to the correlation of magnetic and catalytic properties in OD-Cu,the current density through the OD-Cu electrode increases by nearly 10%at 350 mT.The field strength and angle dependence of such magnetic field effect(MFE),together with the time-resolved measurements proved that it originated from the alignment of magnetic moments on Cu*sites.The MFE on the electrocatalytic process enabled an enhancement(up to 15%)of the CO_(2)RR Faradaic efficiency using the OD-Cu catalyst.Importantly,the enhancement was attributed to the spinantiparallel alignment of electrons to promote C-C coupling on asymmetric Cu*-Cu sites;consequently,the optimal bias was reduced by∼0.2 V under the magnetic field for C2 products with Faradaic efficiency>30%and selectivity>75%.Our work uncovers a new paradigmfor spin-enhanced catalysis applicable to a broad range of chemical reactions involving spin singlet products.