This letter analyzes the outage probability of opportunistic amplify-and-forward relaying over asymmetric and independent but non-identically distributed (i.n.d) fading environments. The work investigates the scenario...This letter analyzes the outage probability of opportunistic amplify-and-forward relaying over asymmetric and independent but non-identically distributed (i.n.d) fading environments. The work investigates the scenarios where cooperative nodes are located at different geographical locations. As a result, the different signals are affected by different i.n.d fading channels, one may undergo Rician fading distribution and others may undergo Rayleigh fading distribution. In this letter, a lower bound of the outage probability for various asymmetric fading environments is derived at high SNR by applying the initial value theorem. The analytical model is validated through Monte-Carlo simulation results.展开更多
文摘This letter analyzes the outage probability of opportunistic amplify-and-forward relaying over asymmetric and independent but non-identically distributed (i.n.d) fading environments. The work investigates the scenarios where cooperative nodes are located at different geographical locations. As a result, the different signals are affected by different i.n.d fading channels, one may undergo Rician fading distribution and others may undergo Rayleigh fading distribution. In this letter, a lower bound of the outage probability for various asymmetric fading environments is derived at high SNR by applying the initial value theorem. The analytical model is validated through Monte-Carlo simulation results.