期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于主动学习和二次有理核的模型无关局部解释方法
1
作者 周晟昊 袁伟伟 关东海 《计算机科学》 CSCD 北大核心 2024年第2期245-251,共7页
深度学习模型的广泛使用,在更大程度上使人们意识到模型的决策是亟需解决的问题,复杂难以解释的黑盒模型阻碍了算法在实际场景中部署。LIME作为最流行的局部解释方法,生成的扰动数据却具有不稳定性,导致最终的解释产生偏差。针对上述问... 深度学习模型的广泛使用,在更大程度上使人们意识到模型的决策是亟需解决的问题,复杂难以解释的黑盒模型阻碍了算法在实际场景中部署。LIME作为最流行的局部解释方法,生成的扰动数据却具有不稳定性,导致最终的解释产生偏差。针对上述问题,提出了一种基于主动学习和二次有理核的模型无关局部解释方法ActiveLIME,使得局部解释模型更加忠于原始分类器。ActiveLIME生成扰动数据后,通过主动学习的查询策略对扰动数据进行采样,筛选不确定性高的扰动集训练,使用迭代过程中准确度最高的局部模型对感兴趣实例生成解释。并且,针对容易陷入局部过拟合的高维稀疏样本,在模型损失函数中引入了二次有理核来减少过拟合。实验结果表明,所提出的ActiveLIME方法引比传统局部解释方法具有更高的局部保真度和解释质量。 展开更多
关键词 局部解释 扰动采样 主动学习查询策略 二次有理核
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部