A novel scheme‘user assisted cooperative relaying in beamspace massive multiple input multiple output(M-MIMO)non-orthogonal multiple access(NOMA)system’has been proposed to improve coverage area,spectrum and energy ...A novel scheme‘user assisted cooperative relaying in beamspace massive multiple input multiple output(M-MIMO)non-orthogonal multiple access(NOMA)system’has been proposed to improve coverage area,spectrum and energy efficiency for millimeter wave(mmWave)communications.A downlink system for M users,where base station(BS)is equipped with beamforming lens antenna structure having NRF radio frequency(RF)chains,has been considered.A dynamic cluster of users is formed within a beam and the intermediate users(in that cluster)between beam source and destination(user)act as relaying stations.By the use of successive interference cancellation(SIC)technique of NOMA within a cluster,the relaying stations relay the symbols with improved power to the destination.For maximizing achievable sum rate,transmit precoding and dynamic power allocation for both intra and inter beam power optimization are implemented.Simulations for performance evaluation are carried out to validate that the proposed system outperforms the conventional beamspace M-MIMO NOMA system for mmWave communications in terms of spectrum and energy efficiency.展开更多
An ultra-low power output-capacitorless low-dropout(LDO) regulator with a slew-rate-enhanced(SRE)circuit is introduced. The increased slew rate is achieved by sensing the transient output voltage of the LDO and th...An ultra-low power output-capacitorless low-dropout(LDO) regulator with a slew-rate-enhanced(SRE)circuit is introduced. The increased slew rate is achieved by sensing the transient output voltage of the LDO and then charging(or discharging) the gate capacitor quickly. In addition, a buffer with ultra-low output impedance is presented to improve line and load regulations. This design is fabricated by SMIC 0.18 μm CMOS technology. Experimental results show that, the proposed LDO regulator only consumes an ultra-low quiescent current of 1.2 μA.The output current range is from 10 μA to 200 m A and the corresponding variation of output voltage is less than 40 m V. Moreover, the measured line regulation and load regulation are 15.38 m V/V and 0.4 m V/m A respectively.展开更多
文摘A novel scheme‘user assisted cooperative relaying in beamspace massive multiple input multiple output(M-MIMO)non-orthogonal multiple access(NOMA)system’has been proposed to improve coverage area,spectrum and energy efficiency for millimeter wave(mmWave)communications.A downlink system for M users,where base station(BS)is equipped with beamforming lens antenna structure having NRF radio frequency(RF)chains,has been considered.A dynamic cluster of users is formed within a beam and the intermediate users(in that cluster)between beam source and destination(user)act as relaying stations.By the use of successive interference cancellation(SIC)technique of NOMA within a cluster,the relaying stations relay the symbols with improved power to the destination.For maximizing achievable sum rate,transmit precoding and dynamic power allocation for both intra and inter beam power optimization are implemented.Simulations for performance evaluation are carried out to validate that the proposed system outperforms the conventional beamspace M-MIMO NOMA system for mmWave communications in terms of spectrum and energy efficiency.
基金Project supported by the National Natural Science Foundation of China(Nos.61401137,61404043,61674049)
文摘An ultra-low power output-capacitorless low-dropout(LDO) regulator with a slew-rate-enhanced(SRE)circuit is introduced. The increased slew rate is achieved by sensing the transient output voltage of the LDO and then charging(or discharging) the gate capacitor quickly. In addition, a buffer with ultra-low output impedance is presented to improve line and load regulations. This design is fabricated by SMIC 0.18 μm CMOS technology. Experimental results show that, the proposed LDO regulator only consumes an ultra-low quiescent current of 1.2 μA.The output current range is from 10 μA to 200 m A and the corresponding variation of output voltage is less than 40 m V. Moreover, the measured line regulation and load regulation are 15.38 m V/V and 0.4 m V/m A respectively.