Auxin,one of the first identified and most widely studied phytohormones,has been and will remain a hot topic in plant biology.After more than a century of passionate exploration,the mysteries of its synthesis,transpor...Auxin,one of the first identified and most widely studied phytohormones,has been and will remain a hot topic in plant biology.After more than a century of passionate exploration,the mysteries of its synthesis,transport,signaling,and metabolism have largely been unlocked.Due to the rapid development of new technologies,new methods,and new genetic materials,the study of auxin has entered the fast lane over the past 30 years.Here,we highlight advances in understanding auxin signaling,including auxin perception,rapid auxin responses,TRANSPORT INHIBITOR RESPONSE 1 and AUXIN SIGNALING F-boxes(TIR1/AFBs)-mediated transcriptional and non-transcriptional branches,and the epigenetic regulation of auxin signaling.We also focus on feedback inhibition mechanisms that prevent the over-amplification of auxin signals.In addition,we cover the TRANSMEMBRANE KINASE-mediated non-canonical signaling,which converges with TIR1/AFBs-mediated transcriptional regulation to coordinate plant growth and development.The identification of additional auxin signaling components and their regulation will continue to open new avenues of research in this field,leading to an increasingly deeper,more comprehensive understanding of how auxin signals are interpreted at the cellular level to regulate plant growth and development.展开更多
以N aC l晶体为致孔剂,合成了具有pH及温度双重敏感特性的海藻酸钠接枝甲基丙烯酸梳状多孔水凝胶。利用扫描电镜观察到该水凝胶具有特殊的孔洞结构,孔径大小为100μm左右。不同pH值及温度下的溶胀和溶胀-收缩动力学研究表明,该水凝胶具...以N aC l晶体为致孔剂,合成了具有pH及温度双重敏感特性的海藻酸钠接枝甲基丙烯酸梳状多孔水凝胶。利用扫描电镜观察到该水凝胶具有特殊的孔洞结构,孔径大小为100μm左右。不同pH值及温度下的溶胀和溶胀-收缩动力学研究表明,该水凝胶具有较快的响应速率,在5 m in内可以达到溶胀平衡,而且溶胀收缩行为有较好的重复性。该水凝胶的最低临界溶液温度(LCST)为30℃左右。比较含孔不同的凝胶膜的响应曲线,发现含孔越多,溶胀率和凝胶体积变化量越大,溶胀收缩响应速率越快。展开更多
基金国家自然科学基金(the National Natural Science Foundation of China under Grant No.40771177)国家高技术研究发展计划(863)(the National High-Tech Research and Development Plan of China under Grant No.2006AA12Z136)
基金financially supported by the National Natural Science Foundation of China and the Israel Science Foundation(NSFC-ISF32061143005)+2 种基金National Natural Science Foundation of China(32000225)Natural Science Foundation of Shandong Province(ZR2020QC036)China Postdoctoral Science Foundation(2020M682165)。
文摘Auxin,one of the first identified and most widely studied phytohormones,has been and will remain a hot topic in plant biology.After more than a century of passionate exploration,the mysteries of its synthesis,transport,signaling,and metabolism have largely been unlocked.Due to the rapid development of new technologies,new methods,and new genetic materials,the study of auxin has entered the fast lane over the past 30 years.Here,we highlight advances in understanding auxin signaling,including auxin perception,rapid auxin responses,TRANSPORT INHIBITOR RESPONSE 1 and AUXIN SIGNALING F-boxes(TIR1/AFBs)-mediated transcriptional and non-transcriptional branches,and the epigenetic regulation of auxin signaling.We also focus on feedback inhibition mechanisms that prevent the over-amplification of auxin signals.In addition,we cover the TRANSMEMBRANE KINASE-mediated non-canonical signaling,which converges with TIR1/AFBs-mediated transcriptional regulation to coordinate plant growth and development.The identification of additional auxin signaling components and their regulation will continue to open new avenues of research in this field,leading to an increasingly deeper,more comprehensive understanding of how auxin signals are interpreted at the cellular level to regulate plant growth and development.
文摘以N aC l晶体为致孔剂,合成了具有pH及温度双重敏感特性的海藻酸钠接枝甲基丙烯酸梳状多孔水凝胶。利用扫描电镜观察到该水凝胶具有特殊的孔洞结构,孔径大小为100μm左右。不同pH值及温度下的溶胀和溶胀-收缩动力学研究表明,该水凝胶具有较快的响应速率,在5 m in内可以达到溶胀平衡,而且溶胀收缩行为有较好的重复性。该水凝胶的最低临界溶液温度(LCST)为30℃左右。比较含孔不同的凝胶膜的响应曲线,发现含孔越多,溶胀率和凝胶体积变化量越大,溶胀收缩响应速率越快。