期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于线性回归的适应性排名算法研究
被引量:
4
1
作者
王胜
《计算机应用研究》
CSCD
北大核心
2015年第9期2684-2686,共3页
根据已有的查询历史记录对排名模型进行自适应调整可以更好地实现检索结果的个性化。为了提高个性化检索的准确性,提出了一种基于线性回归的适应性排名算法。基于线性回归技术提出了一种适应性排名通用框架,该自适应框架通过调整参数来...
根据已有的查询历史记录对排名模型进行自适应调整可以更好地实现检索结果的个性化。为了提高个性化检索的准确性,提出了一种基于线性回归的适应性排名算法。基于线性回归技术提出了一种适应性排名通用框架,该自适应框架通过调整参数来描述不同用户的查询偏好,进而实现排名的个性化,然后将改进的Rank SVM算法应用于该框架,并提出了一种适应性Rank SVM算法。最后,通过真实数据集实验验证了提出算法的有效性,能够明显提高排名准确率。
展开更多
关键词
信息检索
线性回归
排名
准确率
ranksvm
算法
下载PDF
职称材料
题名
基于线性回归的适应性排名算法研究
被引量:
4
1
作者
王胜
机构
安徽大学计算机科学与技术学院
安徽国防科技职业学院信息工程系
出处
《计算机应用研究》
CSCD
北大核心
2015年第9期2684-2686,共3页
基金
安徽省高校优秀青年人才基金重点资助项目(2013SQRL106ZD)
文摘
根据已有的查询历史记录对排名模型进行自适应调整可以更好地实现检索结果的个性化。为了提高个性化检索的准确性,提出了一种基于线性回归的适应性排名算法。基于线性回归技术提出了一种适应性排名通用框架,该自适应框架通过调整参数来描述不同用户的查询偏好,进而实现排名的个性化,然后将改进的Rank SVM算法应用于该框架,并提出了一种适应性Rank SVM算法。最后,通过真实数据集实验验证了提出算法的有效性,能够明显提高排名准确率。
关键词
信息检索
线性回归
排名
准确率
ranksvm
算法
Keywords
information retrieval
linear regression
ranking
precision
ranksvm
分类号
TP301.6 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于线性回归的适应性排名算法研究
王胜
《计算机应用研究》
CSCD
北大核心
2015
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部