Background: Chronic kidney disease (CKD) with moderate-to-severe renal dysfunction usually exhibits an irreversible course, and available treatments for delaying the progression to end-stage renal disease are limit...Background: Chronic kidney disease (CKD) with moderate-to-severe renal dysfunction usually exhibits an irreversible course, and available treatments for delaying the progression to end-stage renal disease are limited. This study aimed to assess the efficacy and safety of the traditional Chinese medicine, Niaoduqing particles, for delaying renal dysfunction in patients with stage 3b-4 CKD.Methods: The present study was a prospective, randomized, double-blind, placebo-controlled, naulticentcr clinical trial. Frorn May 2013 to December 2013,300 CKD patients with an estimated glomerular filtration rate (eGFR) between 20 and 45 ml "rain ~" 1.73 m 2, aged 18-70 years were recruited from 22 hospitals in 11 Chinese provinces. Patients were randomized in a 1:1 ratio to either a test group, which was administered Niaoduqing particles 5 g thrice daily and 10 g before bedtime for 24 weeks, or a control group, which was administered a placebo using the same methods. The primary endpoints were changes in baseline serum creatinine (Scr) and eGFR after completion of treatment. The primary endpoints were analyzed using Student's t-test or Wilcoxon's rank-sum test. The present study reported results based on an intention-to-treat (ITT) analysis. Results: A total of 292 participants underwent the ITT analysis. At 24 weeks, the median (interquartile range) change in Scr was 1.1 (-13.0-24.1) and 11.7 (-2.6-42.9) p, mol/L for the test and control groups, respectively (Z = 2.642, P = 0.008), and the median change in eGFR was -0.2 (-4.3-2.7) and -2.2 (-5.7-0.8) ml.min-1·1.73 m-2, respectively (Z = -2.408, P = 0.016). There were no significant differences in adverse events between the groups. Conclusions: Niaoduqing particles safely and effectively delayed CKD progression in patients with stage 3b-4 CKD. This traditional Chinese medicine may be a promising alternative medication for patients with moderate-to-severe renal dysfunction.展开更多
On the example of typical metals, it’s found that the activation energy of self-diffusion is above of the melting heat and below of vaporization heat. This corresponds to the existence of liquid-mobile particle class...On the example of typical metals, it’s found that the activation energy of self-diffusion is above of the melting heat and below of vaporization heat. This corresponds to the existence of liquid-mobile particle classification based on the concept of randomized particles. A formula for estimating the activation energy of self-diffusion by which it is approximately half of the heat of evaporation of the substance is recommended. We derive the temperature dependence for a fraction self-diffusion’s particles.展开更多
Using thermal barriers at the melting point?Hm and RTm,it is shown that the latter directly reflects the chaotic process,since it is equal to the kinetic energy reserve of chaotic(thermal)particle motions,and the firs...Using thermal barriers at the melting point?Hm and RTm,it is shown that the latter directly reflects the chaotic process,since it is equal to the kinetic energy reserve of chaotic(thermal)particle motions,and the first additionally takes into account the energy expenditure for overcoming the potential energy of the interconnection of particles,which is typical for inorganic compounds.Therefore,to determine the share of crystal-mobile particles responsible for the viscosity of the melt,the chaotization barrier of RTm should be used,since in the virtual clusters the potential binding energy is conserved,thereby compensating for the heat expense of breaking these bonds upon melting.Therefore,to analyze the share of crystal-mobile particles,it is necessary to use the formula of their share in the form:Pcrm=1-exp(-tm/t).On the basis of the distribution of clusters previously found by the authors in terms of the number of crystal-mobile particles included in them,it was shown that all non-single crystal-mobile particles are responsible for the viscosity,and for flowability all single particles,including crystal-mobile,liquid-mobile and vapor-mobile.This ensures the superiority of the share of single particles over the share of crystal-mobile particles arranged in non-single clusters at the melting point,and thereby the fluidity of the melt.Based on the share distribution of clusters in terms of the number of particles entering into them,the share of non-single clusters responsible for the viscosity of the melt is expressed as:Pct=p2crm=[1-exp(-Tm/T)2].The probabilistic meaning of the formation of clusters from non-single crystal-mobile particles is extended to the formation of associates,which made it possible to disclose the meaning of the second level of the exponential dependence of viscosity in the cluster and associate model:η=η1(T1/T)a2(T2/T)b,where the first level is responsible for the formation of clusters,and the second—for associates.This form corresponds to the physical hierarchy when combining crystal-展开更多
The purpose of the research is to develop the temperature dependence of the dynamic viscosity for silver chloride. The data were calculated on the basis of a new cluster and associate equation, which was derived using...The purpose of the research is to develop the temperature dependence of the dynamic viscosity for silver chloride. The data were calculated on the basis of a new cluster and associate equation, which was derived using the concept of randomized particles. The calculated data are given in the temperature range from the melting point to the boiling point. The cluster and associate model is compared with the Frenkel’s equation in logarithmic coordinates, showing the mutual correspondence and complementarity of these models.展开更多
We consider a branching random walk in random environments, where the particles are reproduced as a branching process with a random environment (in time), and move independently as a random walk on ? with a random env...We consider a branching random walk in random environments, where the particles are reproduced as a branching process with a random environment (in time), and move independently as a random walk on ? with a random environment (in locations). We obtain the asymptotic properties on the position of the rightmost particle at time n, revealing a phase transition phenomenon of the system.展开更多
In this paper, an approach to predicting randomly-shaped particle volume based on its two- Dimensional (2-D) digital image is explored. Conversion of gray-scale image of the particles to its binary counterpart is fi...In this paper, an approach to predicting randomly-shaped particle volume based on its two- Dimensional (2-D) digital image is explored. Conversion of gray-scale image of the particles to its binary counterpart is first performed using backlighting technique. The silhouette of particle is thus obtained, and consequently, informative features such as particle area, centroid and shape-related descriptors are collected. Several dimensionless parameters are defined, and used as regressor variables in a multiple linear regression model to predict particle volume. Regressor coefficients are found by fitting to a randomly selected sample of 501 panicles ranging in size from 4.75mm to 25ram. The model testing experiment is conducted against a different aggregate sample of the similar statistical properties, the errors of the model-predicted volume of the batch is within ±2%.展开更多
Particle packing is widely applied in organic pollutant adsorption,catalytic reaction.biomass combustion,nuclear cooling,and other scenarios.Due to the complexity of the shape,the studies on the void fraction of the c...Particle packing is widely applied in organic pollutant adsorption,catalytic reaction.biomass combustion,nuclear cooling,and other scenarios.Due to the complexity of the shape,the studies on the void fraction of the cylindrical particles are not as thorough as the spherical particles.This study investigated the influence of the flling rate,material properties and sphericity on the void fraction of cylinders through experiments and simulation.DEM(discrete element method)was validated by the internal structures of the packing obtained by CT(computed tomography).Based on the logarithmic correlation between the void fraction and flling rate,an ingenious framework for predicting the void fraction of cylindrical particles was presented with two intermediate coefficients.By correlating the coefficients with the material property and sphericity,a novel void-fraction prediction model was established with R-squared of 0.996.The mechanism of void fraction under random loose packing for cylinders was eventually found in this study.展开更多
Basic fluid mechanics and stochastic theories are applied to show that the concentration distribution of suspended solid particles in a direction normal to the mean streamlines of a two-dimensional turbulent flow is g...Basic fluid mechanics and stochastic theories are applied to show that the concentration distribution of suspended solid particles in a direction normal to the mean streamlines of a two-dimensional turbulent flow is greatly influenced by the lift force exerted on them in the vicinity of the wall.Analytic solution shows that,when the direction of the mean flow is horizontal,the probability density function p(y,t)for random displacements of the particles will have a maximum value at a point from the wall where the perpendicular component of the lift force precisely balances particle gravity.Interpretation of experimental observations is presented using this theory.展开更多
We have observed the thermodynamic properties of metallic superconductive nano-particles in the grand canonical ensemble; and the level distribution and the level correlation between the discrete electronic energy lev...We have observed the thermodynamic properties of metallic superconductive nano-particles in the grand canonical ensemble; and the level distribution and the level correlation between the discrete electronic energy levels are considered in the calculation of the electronic spin susceptibility of the ensemble numerically. The quantum effect, even-odd effect and other special effects existing in the metallic nano-particles are also studied in this article.展开更多
Vertical transport is critical to the movement of oil spills in seawater. Breaking waves play an important role by developing a well-defined mixing layer in the upper part of the water column. A three-dimensional (3-...Vertical transport is critical to the movement of oil spills in seawater. Breaking waves play an important role by developing a well-defined mixing layer in the upper part of the water column. A three-dimensional (3-D) Lagrangian random walk oil spill model was used here to study the influence of sea surface waves on the vertical turbulence movement of oil particles. Three vertical diffusion schemes were utilized in the model to compare their impact on oil dispersion and transportation. The first scheme calculated the vertical eddy viscosity semi-empirically. In the second scheme, the vertical diffusion coefficient was obtained directly from an Eulerian hydrodynamic model (Princeton Ocean Model, POM2k) while considering wave- caused turbulence. The third scheme was formulated by solving the Langevin equation. The trajectories, percentages of oil particles intruding into water, and the vertical distribution structures of oil particles were analyzed for a series of numerical experiments with different wind magnitudes. The results showed that the different vertical diffusion schemes could generate different horizontal trajectories and spatial distributions of oil spills on the sea surface. The vertical diffusion schemes caused different water-intruding and resurfacing oil particle behaviors, leading to different horizontal transport of oil particles at the surface and subsurface of the ocean. The vertical diffusion schemes were also applied to a realistic oil spill simulation, and these results were compared to satellite observations. All three schemes yielded acceptable results, and those of the third scheme most closely simulated the observed data.展开更多
基金This study was supported by grants from the National Key Technology R&D Program (Nos. 2013BAI09B05 and 2015BAI12B06), Key Program of the National Natural Science Foundation of China (No. 81330019), General Program of the National Natural Science Foundation of China (No. 81270794), and the Beijing Science and Technology Project (No. D 131100004713003 and No. D171100002817002).
文摘Background: Chronic kidney disease (CKD) with moderate-to-severe renal dysfunction usually exhibits an irreversible course, and available treatments for delaying the progression to end-stage renal disease are limited. This study aimed to assess the efficacy and safety of the traditional Chinese medicine, Niaoduqing particles, for delaying renal dysfunction in patients with stage 3b-4 CKD.Methods: The present study was a prospective, randomized, double-blind, placebo-controlled, naulticentcr clinical trial. Frorn May 2013 to December 2013,300 CKD patients with an estimated glomerular filtration rate (eGFR) between 20 and 45 ml "rain ~" 1.73 m 2, aged 18-70 years were recruited from 22 hospitals in 11 Chinese provinces. Patients were randomized in a 1:1 ratio to either a test group, which was administered Niaoduqing particles 5 g thrice daily and 10 g before bedtime for 24 weeks, or a control group, which was administered a placebo using the same methods. The primary endpoints were changes in baseline serum creatinine (Scr) and eGFR after completion of treatment. The primary endpoints were analyzed using Student's t-test or Wilcoxon's rank-sum test. The present study reported results based on an intention-to-treat (ITT) analysis. Results: A total of 292 participants underwent the ITT analysis. At 24 weeks, the median (interquartile range) change in Scr was 1.1 (-13.0-24.1) and 11.7 (-2.6-42.9) p, mol/L for the test and control groups, respectively (Z = 2.642, P = 0.008), and the median change in eGFR was -0.2 (-4.3-2.7) and -2.2 (-5.7-0.8) ml.min-1·1.73 m-2, respectively (Z = -2.408, P = 0.016). There were no significant differences in adverse events between the groups. Conclusions: Niaoduqing particles safely and effectively delayed CKD progression in patients with stage 3b-4 CKD. This traditional Chinese medicine may be a promising alternative medication for patients with moderate-to-severe renal dysfunction.
文摘On the example of typical metals, it’s found that the activation energy of self-diffusion is above of the melting heat and below of vaporization heat. This corresponds to the existence of liquid-mobile particle classification based on the concept of randomized particles. A formula for estimating the activation energy of self-diffusion by which it is approximately half of the heat of evaporation of the substance is recommended. We derive the temperature dependence for a fraction self-diffusion’s particles.
文摘Using thermal barriers at the melting point?Hm and RTm,it is shown that the latter directly reflects the chaotic process,since it is equal to the kinetic energy reserve of chaotic(thermal)particle motions,and the first additionally takes into account the energy expenditure for overcoming the potential energy of the interconnection of particles,which is typical for inorganic compounds.Therefore,to determine the share of crystal-mobile particles responsible for the viscosity of the melt,the chaotization barrier of RTm should be used,since in the virtual clusters the potential binding energy is conserved,thereby compensating for the heat expense of breaking these bonds upon melting.Therefore,to analyze the share of crystal-mobile particles,it is necessary to use the formula of their share in the form:Pcrm=1-exp(-tm/t).On the basis of the distribution of clusters previously found by the authors in terms of the number of crystal-mobile particles included in them,it was shown that all non-single crystal-mobile particles are responsible for the viscosity,and for flowability all single particles,including crystal-mobile,liquid-mobile and vapor-mobile.This ensures the superiority of the share of single particles over the share of crystal-mobile particles arranged in non-single clusters at the melting point,and thereby the fluidity of the melt.Based on the share distribution of clusters in terms of the number of particles entering into them,the share of non-single clusters responsible for the viscosity of the melt is expressed as:Pct=p2crm=[1-exp(-Tm/T)2].The probabilistic meaning of the formation of clusters from non-single crystal-mobile particles is extended to the formation of associates,which made it possible to disclose the meaning of the second level of the exponential dependence of viscosity in the cluster and associate model:η=η1(T1/T)a2(T2/T)b,where the first level is responsible for the formation of clusters,and the second—for associates.This form corresponds to the physical hierarchy when combining crystal-
基金The work was carried out within the framework of the project AR05130844/GF for grant funding of the MES of Kazakhstan.
文摘The purpose of the research is to develop the temperature dependence of the dynamic viscosity for silver chloride. The data were calculated on the basis of a new cluster and associate equation, which was derived using the concept of randomized particles. The calculated data are given in the temperature range from the melting point to the boiling point. The cluster and associate model is compared with the Frenkel’s equation in logarithmic coordinates, showing the mutual correspondence and complementarity of these models.
基金the National Natural Science Foundation of China (Grant Nos. 10271020,10471012)SRF for ROCS, SEM (Grant No. [2005]564)
文摘We consider a branching random walk in random environments, where the particles are reproduced as a branching process with a random environment (in time), and move independently as a random walk on ? with a random environment (in locations). We obtain the asymptotic properties on the position of the rightmost particle at time n, revealing a phase transition phenomenon of the system.
基金Funded by the Zhejiang Provincial Educatrion Ministry (No.2004884), and the Scientific Research Start-up Foundation of Ningbo University (No.2004037).
文摘In this paper, an approach to predicting randomly-shaped particle volume based on its two- Dimensional (2-D) digital image is explored. Conversion of gray-scale image of the particles to its binary counterpart is first performed using backlighting technique. The silhouette of particle is thus obtained, and consequently, informative features such as particle area, centroid and shape-related descriptors are collected. Several dimensionless parameters are defined, and used as regressor variables in a multiple linear regression model to predict particle volume. Regressor coefficients are found by fitting to a randomly selected sample of 501 panicles ranging in size from 4.75mm to 25ram. The model testing experiment is conducted against a different aggregate sample of the similar statistical properties, the errors of the model-predicted volume of the batch is within ±2%.
基金This work was supported by the China National Key R&D Program during the 13th Five-year Plan Period(grant number 2018YFC0705300)the National Natural Science Foundation of China(grant number 52078354).
文摘Particle packing is widely applied in organic pollutant adsorption,catalytic reaction.biomass combustion,nuclear cooling,and other scenarios.Due to the complexity of the shape,the studies on the void fraction of the cylindrical particles are not as thorough as the spherical particles.This study investigated the influence of the flling rate,material properties and sphericity on the void fraction of cylinders through experiments and simulation.DEM(discrete element method)was validated by the internal structures of the packing obtained by CT(computed tomography).Based on the logarithmic correlation between the void fraction and flling rate,an ingenious framework for predicting the void fraction of cylindrical particles was presented with two intermediate coefficients.By correlating the coefficients with the material property and sphericity,a novel void-fraction prediction model was established with R-squared of 0.996.The mechanism of void fraction under random loose packing for cylinders was eventually found in this study.
文摘Basic fluid mechanics and stochastic theories are applied to show that the concentration distribution of suspended solid particles in a direction normal to the mean streamlines of a two-dimensional turbulent flow is greatly influenced by the lift force exerted on them in the vicinity of the wall.Analytic solution shows that,when the direction of the mean flow is horizontal,the probability density function p(y,t)for random displacements of the particles will have a maximum value at a point from the wall where the perpendicular component of the lift force precisely balances particle gravity.Interpretation of experimental observations is presented using this theory.
基金Project supported by the National Natural Science Foundation of China (Grant No 10147207).
文摘We have observed the thermodynamic properties of metallic superconductive nano-particles in the grand canonical ensemble; and the level distribution and the level correlation between the discrete electronic energy levels are considered in the calculation of the electronic spin susceptibility of the ensemble numerically. The quantum effect, even-odd effect and other special effects existing in the metallic nano-particles are also studied in this article.
基金supported by Marine Industry Scientific Research Special Funds for Public Welfare Project-The development and application of fine-scale high precision comprehensive forecast system on the key protection coastal area(Grant No.201305031)The modular construction and application of marine forecasting operational system(Grant No.201205017)
文摘Vertical transport is critical to the movement of oil spills in seawater. Breaking waves play an important role by developing a well-defined mixing layer in the upper part of the water column. A three-dimensional (3-D) Lagrangian random walk oil spill model was used here to study the influence of sea surface waves on the vertical turbulence movement of oil particles. Three vertical diffusion schemes were utilized in the model to compare their impact on oil dispersion and transportation. The first scheme calculated the vertical eddy viscosity semi-empirically. In the second scheme, the vertical diffusion coefficient was obtained directly from an Eulerian hydrodynamic model (Princeton Ocean Model, POM2k) while considering wave- caused turbulence. The third scheme was formulated by solving the Langevin equation. The trajectories, percentages of oil particles intruding into water, and the vertical distribution structures of oil particles were analyzed for a series of numerical experiments with different wind magnitudes. The results showed that the different vertical diffusion schemes could generate different horizontal trajectories and spatial distributions of oil spills on the sea surface. The vertical diffusion schemes caused different water-intruding and resurfacing oil particle behaviors, leading to different horizontal transport of oil particles at the surface and subsurface of the ocean. The vertical diffusion schemes were also applied to a realistic oil spill simulation, and these results were compared to satellite observations. All three schemes yielded acceptable results, and those of the third scheme most closely simulated the observed data.