针对点云平面拟合过程中出现的异常值及误差的问题,提出一种将随机采样一致(random sample consensus,RANSAC)算法与整体最小二乘法(total least squares,TLS)相结合的点云平面拟合方法。利用随机采样一致算法剔除异常值,利用整体最小...针对点云平面拟合过程中出现的异常值及误差的问题,提出一种将随机采样一致(random sample consensus,RANSAC)算法与整体最小二乘法(total least squares,TLS)相结合的点云平面拟合方法。利用随机采样一致算法剔除异常值,利用整体最小二乘法对剩余有效点进行平面拟合,计算模型参数。实验结果表明,该方法与传统的特征值法、最小二乘法相比,能提高参数的估算精度,更适合对含有不同异常值及误差的点云数据进行拟合,是一种稳健的平面拟合方法。展开更多
目的针对基于SURF特征点的图像配准算法对颜色单一的彩色图像提取的特征点较少及配准时间复杂度高等问题,提出一种基于融合特征的快速SURF(speed up robust features)配准算法。方法该算法首先提取图像的颜色不变量边缘特征和CS-LBP(cen...目的针对基于SURF特征点的图像配准算法对颜色单一的彩色图像提取的特征点较少及配准时间复杂度高等问题,提出一种基于融合特征的快速SURF(speed up robust features)配准算法。方法该算法首先提取图像的颜色不变量边缘特征和CS-LBP(central symmetry-local binary patterns)纹理特征形成融合特征灰度图,并利用颜色直方图的方差自适应调节融合特征间的权重。其次,在融合特征灰度图上提取SURF(speed up robust features)特征点及描述子。再次,用最近邻匹配法形成粗匹配对,结合改进的快速RANSAC(random sample consensus)算法得到精匹配对。最后,使用最小二乘法求出映射关系用于配准图像。结果本文算法能够在融合特征上提取更稳定的SURF特征点,用该特征点进行配准能提高配准5%精度,且减少时间复杂度15%,实现了对普通场景下图像的快速配准。结论本文算法能提取稳定数量的特征点,提高了精确度与鲁棒性,并通过改进的RANSAC算法提高了执行效率,降低了迭代次数。展开更多
文摘针对点云平面拟合过程中出现的异常值及误差的问题,提出一种将随机采样一致(random sample consensus,RANSAC)算法与整体最小二乘法(total least squares,TLS)相结合的点云平面拟合方法。利用随机采样一致算法剔除异常值,利用整体最小二乘法对剩余有效点进行平面拟合,计算模型参数。实验结果表明,该方法与传统的特征值法、最小二乘法相比,能提高参数的估算精度,更适合对含有不同异常值及误差的点云数据进行拟合,是一种稳健的平面拟合方法。