油中溶解气体分析(dissolved gas analysis,DGA)是变压器故障诊断的重要方法。变压器故障诊断研究大多采用人工智能方法学习建立单个分类器,与单个分类器相比,分类器群能够更全面地学习样本集特性,达到更好的诊断效果。分类器间的差异...油中溶解气体分析(dissolved gas analysis,DGA)是变压器故障诊断的重要方法。变压器故障诊断研究大多采用人工智能方法学习建立单个分类器,与单个分类器相比,分类器群能够更全面地学习样本集特性,达到更好的诊断效果。分类器间的差异性是影响群体性能的主要因素,针对DGA特征量较少训练得到的分类器差异不大的问题,提出将核主成分分析(kernel principle component analysis,KPCA)与随机森林方法相结合,KPCA将样本从低维的状态空间非线性地映射到高维的核空间,在核空间用随机森林方法训练得到分类器群。对DGA故障样本以及加噪样本的诊断实验结果表明,KPCA能够有效地提取故障特征,用核特征量建模的诊断效果优于直接采用DGA特征量,分类器群的诊断效果以及抗干扰能力均高于单个分类器。展开更多
叶面积指数(leaf area index,LAI)是反映作物群体大小的较好的动态指标。运用高光谱技术快速、无损地估测苹果树冠叶面积指数,为监测苹果树长势和估产提供参考。以盛果期红富士苹果树为研究对象,采用ASD地物光谱仪和LAI-2200冠层分析仪...叶面积指数(leaf area index,LAI)是反映作物群体大小的较好的动态指标。运用高光谱技术快速、无损地估测苹果树冠叶面积指数,为监测苹果树长势和估产提供参考。以盛果期红富士苹果树为研究对象,采用ASD地物光谱仪和LAI-2200冠层分析仪,在山东省烟台栖霞研究区,连续2年测量了30个果园90棵苹果树冠层光谱反射率及LAI值;通过相关性分析方法构建并筛选出了最优的植被指数;利用支持向量机(support vector machine,SVM)与随机森林(random forests,RF)多元回归分析方法构建了LAI估测模型。新建的GNDVI527,NDVI676,RVI682,FD-NVI656和GRVI517五个植被指数及前人建立的两个植被指数NDVI670和NDVI705与LAI的相关性都达到了极显著水平;建立的RF回归模型中,校正集决定系数C-R2和验证集决定系数V-R2为0.920,0.889,分别比SVM回归模型提高了0.045和0.033,校正集均方根误差C-RMSE、验证集均方根误差V-RMSE为0.249,0.236,分别比SVM回归模型降低了0.054和0.058,校正集相对分析误C-RPD、验证集相对分析误V-RPD达到了3.363和2.520,分别比SVM回归模型提高了0.598和0.262,校正集及验证集的实测值与预测值散点图趋势线的斜率C-S和V-S都接近于1,RF回归模型的估测效果优于SVM。RF多元回归模型适合盛果期红富士苹果树LAI的估测。展开更多
提出一种多标签随机森林(Multi-label Random Forest,ML-RF)分类算法,并将其应用于电能质量复合扰动分类。ML-RF是基于多标签决策树(Multi-label Decision Tree,ML-DT)的集成学习算法,利用子决策树的组合来增强分类器的整体性能。首先...提出一种多标签随机森林(Multi-label Random Forest,ML-RF)分类算法,并将其应用于电能质量复合扰动分类。ML-RF是基于多标签决策树(Multi-label Decision Tree,ML-DT)的集成学习算法,利用子决策树的组合来增强分类器的整体性能。首先对电能质量扰动信号进行平稳小波变换,计算各层分解系数的小波能量熵作为分类特征向量。然后使用Bootstrap自助法和子空间采样构造不同的训练集训练子决策树。最后组合子决策树得到ML-RF分类器,并对复合电能质量扰动进行分类。仿真结果表明,在不同噪声情况下,该方法均能有效进行复合扰动的分类,具有较好的噪声鲁棒性,是复合电能质量扰动分类的一种可行方法。展开更多
文摘提出一种多标签随机森林(Multi-label Random Forest,ML-RF)分类算法,并将其应用于电能质量复合扰动分类。ML-RF是基于多标签决策树(Multi-label Decision Tree,ML-DT)的集成学习算法,利用子决策树的组合来增强分类器的整体性能。首先对电能质量扰动信号进行平稳小波变换,计算各层分解系数的小波能量熵作为分类特征向量。然后使用Bootstrap自助法和子空间采样构造不同的训练集训练子决策树。最后组合子决策树得到ML-RF分类器,并对复合电能质量扰动进行分类。仿真结果表明,在不同噪声情况下,该方法均能有效进行复合扰动的分类,具有较好的噪声鲁棒性,是复合电能质量扰动分类的一种可行方法。