Let (Ω, F, P)=([0, 1], [0, 1], μ)<sup>N</sup> (μ is the Lebesque measure, N={1, 2,…}).{X<sub>n</sub>}<sub>n=1</sub><sup>∞</sup> are independent random variabl...Let (Ω, F, P)=([0, 1], [0, 1], μ)<sup>N</sup> (μ is the Lebesque measure, N={1, 2,…}).{X<sub>n</sub>}<sub>n=1</sub><sup>∞</sup> are independent random variables on (Ω, F, P) with X<sub>n</sub>(ω)=ω<sub>n</sub>, where ω=(ω<sub>1</sub>, ω<sub>2</sub>,…). The {X<sub>n</sub>}<sub>n=1</sub><sup>∞</sup> are almost surely distinct. Thus to almost all sample points ω there is a random partial order 【 of the integers given展开更多
文摘Let (Ω, F, P)=([0, 1], [0, 1], μ)<sup>N</sup> (μ is the Lebesque measure, N={1, 2,…}).{X<sub>n</sub>}<sub>n=1</sub><sup>∞</sup> are independent random variables on (Ω, F, P) with X<sub>n</sub>(ω)=ω<sub>n</sub>, where ω=(ω<sub>1</sub>, ω<sub>2</sub>,…). The {X<sub>n</sub>}<sub>n=1</sub><sup>∞</sup> are almost surely distinct. Thus to almost all sample points ω there is a random partial order 【 of the integers given