Ralstonia eutropha was genetically modified to induce ethanol production from glucose. An electrochemical bioreactor was prepared to generate electrochemical reducing power coupled to regeneration of NADH. Growing cel...Ralstonia eutropha was genetically modified to induce ethanol production from glucose. An electrochemical bioreactor was prepared to generate electrochemical reducing power coupled to regeneration of NADH. Growing cells of recombinant R. eutropha produced about 29 mM of ethanol in conventional conditions and 56 mM of ethanol in electrochemically reduced conditions from 100 mM glucose. Grown cells of the recombinant produced about 52 mM of ethanol in conventional conditions and 142 mM of ethanol in electrochemically reduced condition from 100 mM glucose. These results are a clue that electrochemical reducing power can induce the recombinant R. eutropha to produce more ethanol coupled to increase of NADH/NAD+ ratio.展开更多
A new technology was developed to couple the anaerobic digestion of food wastes with production of polyhydroxyalkanoates (PHAs). Acetic, propionic, butyric and lactic acids were produced during food wastes anaerobic d...A new technology was developed to couple the anaerobic digestion of food wastes with production of polyhydroxyalkanoates (PHAs). Acetic, propionic, butyric and lactic acids were produced during food wastes anaerobic digestion and their concentrations reached 5.5, 1.8, 27.4 and 32.7 g/L, respectively under appropriate digestion conditions. The fermentative acids were transferred through a dialysis membrane to an air-lift reactor for PHA synthesis by Ralstonia eutropha. Dry cell concentration and PHA content reached 22.7 g/L and 72.6%, respectively. The obtained PHA was a copolymer of b-hydroxybutyrate (HB) and b-hydroxyvalerate (HV) with 2.8% (mole ratio) of HV units in polymer.展开更多
文摘Ralstonia eutropha was genetically modified to induce ethanol production from glucose. An electrochemical bioreactor was prepared to generate electrochemical reducing power coupled to regeneration of NADH. Growing cells of recombinant R. eutropha produced about 29 mM of ethanol in conventional conditions and 56 mM of ethanol in electrochemically reduced conditions from 100 mM glucose. Grown cells of the recombinant produced about 52 mM of ethanol in conventional conditions and 142 mM of ethanol in electrochemically reduced condition from 100 mM glucose. These results are a clue that electrochemical reducing power can induce the recombinant R. eutropha to produce more ethanol coupled to increase of NADH/NAD+ ratio.
文摘A new technology was developed to couple the anaerobic digestion of food wastes with production of polyhydroxyalkanoates (PHAs). Acetic, propionic, butyric and lactic acids were produced during food wastes anaerobic digestion and their concentrations reached 5.5, 1.8, 27.4 and 32.7 g/L, respectively under appropriate digestion conditions. The fermentative acids were transferred through a dialysis membrane to an air-lift reactor for PHA synthesis by Ralstonia eutropha. Dry cell concentration and PHA content reached 22.7 g/L and 72.6%, respectively. The obtained PHA was a copolymer of b-hydroxybutyrate (HB) and b-hydroxyvalerate (HV) with 2.8% (mole ratio) of HV units in polymer.