Guangzhou spring rainfall mainly exhibits interannual variation of Quasi-biannual and interdecadal variation of 30 yrs, and is in the period of weak rainfall at interdecadal time scale. SST anomalies (SSTA) of Nino3...Guangzhou spring rainfall mainly exhibits interannual variation of Quasi-biannual and interdecadal variation of 30 yrs, and is in the period of weak rainfall at interdecadal time scale. SST anomalies (SSTA) of Nino3 are the strongest precursor of Guangzhou spring rainfall. They have significant positive correlation from previous November and persist stably to April. Nino3 SSTA in the previous winter affects Guangzhou spring rainfall through North Pacific subtropical high and low wind in spring. When Nino3 SSTA is positive in the previous winter, sprirg subtropical high is intense and westward, South China is located in the area of ascending airflow at the edge of the subtropical high, and water vapor transporting to South China is intensified by anticyclone circulation to the east of the Philippines. So Guangzhou spring rainfall is heavy. When Nino3 SSTA is negative, the subtropical high is weak and eastward, South China is far away from the subtropical high and is located in the area of descending airflow, and water vapor transportirg to South China is weak because low-level cyclonic circulation controls areas to the east of the Philippines and north wind prevails in South China. So Guangzhou spring rainfall is weak ard spring drought is resulted.展开更多
During extended winter (November-April), 43% of the intraseasonal rainfall variability in China is explained by three spatial patterns of temporally coherent rainfall, These patterns were identified with empirical o...During extended winter (November-April), 43% of the intraseasonal rainfall variability in China is explained by three spatial patterns of temporally coherent rainfall, These patterns were identified with empirical orthogonal teleconnection (EOT) analysis of observed 1982-2007 pentad rainfall anomalies and connected to midlatitude disturbances. However, ex- amination of individual strong EOT events shows that there is substantial inter-event variability in their dynamical evolution, which implies that precursor patterns found in regressions cannot serve as useful predictors. To understand the physical nature and origins of the extratropical precursors, the EOT technique is applied to six simulations of the Met Office Unified Model at horizontal resolutions of 200-40 km, with and without air-sea coupling. All simulations reproduce the observed precursor patterns in regressions, indicating robust underlying dynamical processes. Further investigation into the dynamics associated with observed patterns shows that Rossby wave dynamics can explain the large inter-event variability. The results suggest that the appaxently slowly evolving or quasi-stationaxy waves in regression analysis are a statistical amalgamation of more rapidly propagating waves with a variety of origins and properties.展开更多
Flysch-type aquifers in the Eastern Carpathians usually feed periodic and low-discharge springs. However, in some areas, such as in the upper part of the Polonina Wetlińska Massif, perennial springs with a relatively...Flysch-type aquifers in the Eastern Carpathians usually feed periodic and low-discharge springs. However, in some areas, such as in the upper part of the Polonina Wetlińska Massif, perennial springs with a relatively high discharge were identified. Therefore, the aim of this study was to identify recharge and groundwater flow patterns of three high-discharge springs based on the response of spring discharge to rainfall and on the relationship between specific electrical conductivity of water and spring discharge. The relation between spring discharge and rainfall was investigated by crosscorrelation analyses. Generally, cumulative rainfall over a period from 10 days to 3 months is most strongly correlated with discharge;however, the response time of spring discharge varies throughout the year. Faster response to rainfall occurs in the spring after snowmelt, while in the summer and autumn months the response time increases. Two flow systems were identified: 1) a relatively deep, fissure-pore flow system with a long response time to precipitation and 2) a shallow, fissure-dominated system with a short response time, which is superimposed on the longer response. A small range of specific electrical conductivity combined with the varying discharge of two springs suggests that dilution of groundwater by rainwater does not play a significant role. The differences in the studied springs’ response to rainfall can be attributed to the recharge area, regolith features and local bedrock structures, i.e. occurrence of joints and faults, monoclinal dip of rock layers and gravitational slope deformations including ridge-top trenches, which, thus far, have been underestimated in determining groundwater storage capacity in the flysch part of the Carpathians.展开更多
In our previous study, a statistical linkage between the spring Arctic sea ice concentration (SIC) and the succeeding Chinese summer rainfall during the period 1968-2005 was identified. This linkage is demonstrated ...In our previous study, a statistical linkage between the spring Arctic sea ice concentration (SIC) and the succeeding Chinese summer rainfall during the period 1968-2005 was identified. This linkage is demonstrated by the leading singular value decomposition (SVD) that accounts for 19% of the co-variance. Both spring SIC and Chinese summer rainfall exhibit a coherent interannual variability and two apparent interdecadal variations that occurred in the late 1970s and the early 1990s. The combined impacts of both spring Arctic SIC and Eurasian snow cover on the summer Eurasian wave train may explain their statistical linkage. In this study, we show that evolution of atmospheric circulation anomalies from spring to summer, to a great extent, may explain the spatial distribution of spring and summer Arctic SIC anomalies, and is dynamically consistent with Chinese summer rainfall anomalies in recent decades. The association between spring Arctic SIC and Chinese summer rainfall on interannual time scales is more important relative to interdecadal time scales. The summer Arctic dipole anomaly may serve as the bridge linking the spring Arctic SIC and Chinese summer rainfall, and their coherent interdecadal variations may reflect the feedback of spring SIC variability on the atmosphere. The summer Arctic dipole anomaly shows a closer relationship with the Chinese summer rainfall relative to the Arctic Oscillation.展开更多
基金Research on the Technologies of Predicting Drought Prospects in Guangdong, a plannedproject for Guangdong Province (2005B32601007)
文摘Guangzhou spring rainfall mainly exhibits interannual variation of Quasi-biannual and interdecadal variation of 30 yrs, and is in the period of weak rainfall at interdecadal time scale. SST anomalies (SSTA) of Nino3 are the strongest precursor of Guangzhou spring rainfall. They have significant positive correlation from previous November and persist stably to April. Nino3 SSTA in the previous winter affects Guangzhou spring rainfall through North Pacific subtropical high and low wind in spring. When Nino3 SSTA is positive in the previous winter, sprirg subtropical high is intense and westward, South China is located in the area of ascending airflow at the edge of the subtropical high, and water vapor transporting to South China is intensified by anticyclone circulation to the east of the Philippines. So Guangzhou spring rainfall is heavy. When Nino3 SSTA is negative, the subtropical high is weak and eastward, South China is far away from the subtropical high and is located in the area of descending airflow, and water vapor transportirg to South China is weak because low-level cyclonic circulation controls areas to the east of the Philippines and north wind prevails in South China. So Guangzhou spring rainfall is weak ard spring drought is resulted.
基金supported by the UK-China Research & Innovation Partnership Fund through the Met Office Climate Science for Service Partnership(CSSP) China,as part of the Newton Fundsupported by an Independent Research Fellowship from the UK Natural Environment Research Council(NE/L010976/1)
文摘During extended winter (November-April), 43% of the intraseasonal rainfall variability in China is explained by three spatial patterns of temporally coherent rainfall, These patterns were identified with empirical orthogonal teleconnection (EOT) analysis of observed 1982-2007 pentad rainfall anomalies and connected to midlatitude disturbances. However, ex- amination of individual strong EOT events shows that there is substantial inter-event variability in their dynamical evolution, which implies that precursor patterns found in regressions cannot serve as useful predictors. To understand the physical nature and origins of the extratropical precursors, the EOT technique is applied to six simulations of the Met Office Unified Model at horizontal resolutions of 200-40 km, with and without air-sea coupling. All simulations reproduce the observed precursor patterns in regressions, indicating robust underlying dynamical processes. Further investigation into the dynamics associated with observed patterns shows that Rossby wave dynamics can explain the large inter-event variability. The results suggest that the appaxently slowly evolving or quasi-stationaxy waves in regression analysis are a statistical amalgamation of more rapidly propagating waves with a variety of origins and properties.
基金supported by the National Science Centre of Poland, as a part of the research project (grant number 2016/23/N/ST10/01327)。
文摘Flysch-type aquifers in the Eastern Carpathians usually feed periodic and low-discharge springs. However, in some areas, such as in the upper part of the Polonina Wetlińska Massif, perennial springs with a relatively high discharge were identified. Therefore, the aim of this study was to identify recharge and groundwater flow patterns of three high-discharge springs based on the response of spring discharge to rainfall and on the relationship between specific electrical conductivity of water and spring discharge. The relation between spring discharge and rainfall was investigated by crosscorrelation analyses. Generally, cumulative rainfall over a period from 10 days to 3 months is most strongly correlated with discharge;however, the response time of spring discharge varies throughout the year. Faster response to rainfall occurs in the spring after snowmelt, while in the summer and autumn months the response time increases. Two flow systems were identified: 1) a relatively deep, fissure-pore flow system with a long response time to precipitation and 2) a shallow, fissure-dominated system with a short response time, which is superimposed on the longer response. A small range of specific electrical conductivity combined with the varying discharge of two springs suggests that dilution of groundwater by rainwater does not play a significant role. The differences in the studied springs’ response to rainfall can be attributed to the recharge area, regolith features and local bedrock structures, i.e. occurrence of joints and faults, monoclinal dip of rock layers and gravitational slope deformations including ridge-top trenches, which, thus far, have been underestimated in determining groundwater storage capacity in the flysch part of the Carpathians.
基金supported by the National Key Basic Research and Development Project of China(Grant Nos2004CB418300 and 2007CB411505)Chinese COPES project(GYHY200706005)the Na-tional Natural Science Foundation of China(Grant No40875052)
文摘In our previous study, a statistical linkage between the spring Arctic sea ice concentration (SIC) and the succeeding Chinese summer rainfall during the period 1968-2005 was identified. This linkage is demonstrated by the leading singular value decomposition (SVD) that accounts for 19% of the co-variance. Both spring SIC and Chinese summer rainfall exhibit a coherent interannual variability and two apparent interdecadal variations that occurred in the late 1970s and the early 1990s. The combined impacts of both spring Arctic SIC and Eurasian snow cover on the summer Eurasian wave train may explain their statistical linkage. In this study, we show that evolution of atmospheric circulation anomalies from spring to summer, to a great extent, may explain the spatial distribution of spring and summer Arctic SIC anomalies, and is dynamically consistent with Chinese summer rainfall anomalies in recent decades. The association between spring Arctic SIC and Chinese summer rainfall on interannual time scales is more important relative to interdecadal time scales. The summer Arctic dipole anomaly may serve as the bridge linking the spring Arctic SIC and Chinese summer rainfall, and their coherent interdecadal variations may reflect the feedback of spring SIC variability on the atmosphere. The summer Arctic dipole anomaly shows a closer relationship with the Chinese summer rainfall relative to the Arctic Oscillation.