In this article, a numerical model combining conduction and radiation is developed based on two flux approximation to predict the heat transfer behavior of fibrous insulation used in thermal protection systems. Monte ...In this article, a numerical model combining conduction and radiation is developed based on two flux approximation to predict the heat transfer behavior of fibrous insulation used in thermal protection systems. Monte Carlo method is utilized to determine the modified radiative properties with experimentally measured transient external temperature as high as 1 000 K. It is found that the estimated radiative properties become time-independent after about t = 3 000 s. By comparing the predicted to the measured results in transient state, the contact resistance exerts significant influences upon the temperature distribution in the specimen. Results show that the averaged absolute deviation is 3.25% when contact resistance is neglected in heat transfer model, while 1.82% with no contact resistance.展开更多
Optical absorption spectra of Sm(DBM) 3 doped PMMA (polymethyl methacrylate) in near infrared and visible region are presented. The energy levels were assigned and analyzed in terms of the free-ion Hamiltonian model....Optical absorption spectra of Sm(DBM) 3 doped PMMA (polymethyl methacrylate) in near infrared and visible region are presented. The energy levels were assigned and analyzed in terms of the free-ion Hamiltonian model. Energy levels and reduced matrix elements calculations were carried out using the complete 198 SLJ basis sets for the 4f5 configuration. Judd-Ofelt parameters were evaluated and used to predict the radiative properties of the sample. The theoretical and experimental values for radiative lifetimes and branching ratios were discussed.展开更多
基金National High-tech Research and Development Program(2006AA705317)
文摘In this article, a numerical model combining conduction and radiation is developed based on two flux approximation to predict the heat transfer behavior of fibrous insulation used in thermal protection systems. Monte Carlo method is utilized to determine the modified radiative properties with experimentally measured transient external temperature as high as 1 000 K. It is found that the estimated radiative properties become time-independent after about t = 3 000 s. By comparing the predicted to the measured results in transient state, the contact resistance exerts significant influences upon the temperature distribution in the specimen. Results show that the averaged absolute deviation is 3.25% when contact resistance is neglected in heat transfer model, while 1.82% with no contact resistance.
文摘Optical absorption spectra of Sm(DBM) 3 doped PMMA (polymethyl methacrylate) in near infrared and visible region are presented. The energy levels were assigned and analyzed in terms of the free-ion Hamiltonian model. Energy levels and reduced matrix elements calculations were carried out using the complete 198 SLJ basis sets for the 4f5 configuration. Judd-Ofelt parameters were evaluated and used to predict the radiative properties of the sample. The theoretical and experimental values for radiative lifetimes and branching ratios were discussed.