辐射顶板供冷以其节能、良好的热舒适度、无吹风感、改善室内空气品质、降低峰值能耗、节省建筑空间等优点,已经被越来越多地选作空调末端。辐射顶板供冷市场需求不断增大同时对辐射顶板制冷量的测试提出了更高的要求。本文对两种顶板...辐射顶板供冷以其节能、良好的热舒适度、无吹风感、改善室内空气品质、降低峰值能耗、节省建筑空间等优点,已经被越来越多地选作空调末端。辐射顶板供冷市场需求不断增大同时对辐射顶板制冷量的测试提出了更高的要求。本文对两种顶板辐射供冷性能实验测试方法(DIN EN 14240标准和ANSI/ASHRAE 138标准)和两种辐射顶板制冷量的计算方法(ASHRAE手册和BS EN 1264标准)做了介绍,并对辐射板供冷量的两种实验测试方法和两种计算方法分别做了比较;在按EN 14240标准搭建的实验台中对金属辐射顶板进行了测试,将辐射板单位面积供冷量两种计算值与实验测试值进行了比较并分析了误差原因。展开更多
The influence of the panel position on the cooling performance of a radiant panel is analyzed.The coupled simulation of convection and radiation is set up by a computational fluid dynamics(CFD)method.The simulations...The influence of the panel position on the cooling performance of a radiant panel is analyzed.The coupled simulation of convection and radiation is set up by a computational fluid dynamics(CFD)method.The simulations with different panel positions and different indoor heat sources are used to calculate the cooling capacity of the radiant panel and the indoor thermal environment.The simulation results are in good agreement with the experimental results.The results show that when the indoor heat source temperature is low,the convective heat flux is the main influence factor of the cooling capacity and the radiant panel should be placed on the wall or on the ceiling.Otherwise,when the indoor heat source temperature is high,the radiation heat flux is the main factor and the radiant panel should be placed as near to the heat sources as possible.展开更多
文摘辐射顶板供冷以其节能、良好的热舒适度、无吹风感、改善室内空气品质、降低峰值能耗、节省建筑空间等优点,已经被越来越多地选作空调末端。辐射顶板供冷市场需求不断增大同时对辐射顶板制冷量的测试提出了更高的要求。本文对两种顶板辐射供冷性能实验测试方法(DIN EN 14240标准和ANSI/ASHRAE 138标准)和两种辐射顶板制冷量的计算方法(ASHRAE手册和BS EN 1264标准)做了介绍,并对辐射板供冷量的两种实验测试方法和两种计算方法分别做了比较;在按EN 14240标准搭建的实验台中对金属辐射顶板进行了测试,将辐射板单位面积供冷量两种计算值与实验测试值进行了比较并分析了误差原因。
基金The National Natural Science Foundation of China(No.50778094)
文摘The influence of the panel position on the cooling performance of a radiant panel is analyzed.The coupled simulation of convection and radiation is set up by a computational fluid dynamics(CFD)method.The simulations with different panel positions and different indoor heat sources are used to calculate the cooling capacity of the radiant panel and the indoor thermal environment.The simulation results are in good agreement with the experimental results.The results show that when the indoor heat source temperature is low,the convective heat flux is the main influence factor of the cooling capacity and the radiant panel should be placed on the wall or on the ceiling.Otherwise,when the indoor heat source temperature is high,the radiation heat flux is the main factor and the radiant panel should be placed as near to the heat sources as possible.