Traditional inverse synthetic aperture radar(ISAR)imaging methods for maneuvering targets have low resolution and poor capability of noise suppression. An ISAR imaging method of maneuvering targets based on phase retr...Traditional inverse synthetic aperture radar(ISAR)imaging methods for maneuvering targets have low resolution and poor capability of noise suppression. An ISAR imaging method of maneuvering targets based on phase retrieval is proposed,which can provide a high-resolution and focused map of the spatial distribution of scatterers on the target. According to theoretical derivation, the modulus of raw data from the maneuvering target is not affected by radial motion components for ISAR imaging system, so the phase retrieval algorithm can be used for ISAR imaging problems. However, the traditional phase retrieval algorithm will be not applicable to ISAR imaging under the condition of random noise. To solve this problem, an algorithm is put forward based on the range Doppler(RD) algorithm and oversampling smoothness(OSS) phase retrieval algorithm. The algorithm captures the target information in order to reduce the influence of the random phase on ISAR echoes, and then applies OSS for focusing imaging based on prior information of the RD algorithm. The simulated results demonstrate the validity of this algorithm, which cannot only obtain high resolution imaging for high speed maneuvering targets under the condition of random noise, but also substantially improve the success rate of the phase retrieval algorithm.展开更多
For real-time jamming signal generation in deceiving inverse synthetic aperture radar(ISAR),the target characteristics modulation is always processed in the expensive field programmable gate array(FPGA).Due to the...For real-time jamming signal generation in deceiving inverse synthetic aperture radar(ISAR),the target characteristics modulation is always processed in the expensive field programmable gate array(FPGA).Due to the large computational complexity of the traditional modulating operation,the size and structure of simulated false-target are limited.With regard to the principle of dechirping in range compression of linear frequency modulated(LFM) radar,a novel algorithm named "inverse dechirping" is proposed for target characteristics modulation.This algorithm only needs one complex multiplier in the FPGA to generate the jamming signal when the radar signal is intercepted,which can be obtained by multiplication of radar signal samplings and the equivalent dechirped target echo in the time domain.As the complex synthesis of dechirped target echo can be realized by cheap digital signal processor(DSP) within the interpulse time,the overall cost of the jamming equipment will be reduced and the false-target size will not be limited by the scale of FPGA.Numerical simulations are performed to verify the correctness and effectiveness of the proposed algorithm.展开更多
Pointing estimation for spacecraft using Inverse Synthetic Aperture Radar(ISAR)images plays a significant role in space situational awareness and surveillance.However,feature extraction and cross-range scaling of ISAR...Pointing estimation for spacecraft using Inverse Synthetic Aperture Radar(ISAR)images plays a significant role in space situational awareness and surveillance.However,feature extraction and cross-range scaling of ISAR images create bottlenecks that limit performances of current estimation methods.Especially,the emergence of staring imaging satellites,characterized by complex kinematic behaviors,presents a novel challenge to this task.To address these issues,this article proposes a pointing estimation method based on Convolutional Neural Networks(CNNs)and a numerical optimization algorithm.A satellite’s main axis,which is extracted from ISAR images by a proposed Semantic Axis Region Regression Net(SARRN),is chosen for investigation in this article due to its unique structure.Specifically,considering the kinematic characteristic of the staring satellite,an ISAR imaging model is established to bridge the target pointing and the extracted axes.Based on the imaging model,pointing estimation and cross-range scaling can be described as a maximum likelihood estimation problem,and an iterative optimization algorithm modified by using the strategy of random sampling-consistency check and weighted least squares is proposed to solve this problem.Finally,the pointing of targets and the cross-range scaling factors of ISAR images are obtained.Simulation experiments based on actual satellite orbital parameters verify the effectiveness of the proposed method.This work can improve the performance of satellite reconnaissance warning,while accurate cross-range scaling can provide a basis for subsequent data processes such as 3D reconstruction and attitude estimation.展开更多
The continuous emergence of new targets in open scenarios leads to a substantial decrease in the performance of Inverse Synthetic Aperture Radar(ISAR)recognition systems.Also,data scarcity further exacerbates the chal...The continuous emergence of new targets in open scenarios leads to a substantial decrease in the performance of Inverse Synthetic Aperture Radar(ISAR)recognition systems.Also,data scarcity further exacerbates the challenge of identifying new classes of ISAR targets.In this paper,a few-shot incremental target recognition framework based on Scattering-Topology Properties(STPIL)is proposed.Specifically,STPIL extracts scattering-topology properties of ISAR targets as recognition features.Meanwhile,the pseudo-incremental training strategy effectively alleviates the algorithm’s forgetting of old knowledge,and improves compatibility with new classes.Besides,a feature embedding network,with few parameters,is designed based on the graph neural network.This embedding network is highly adaptable to changes in data distribution.Additionally,STPIL fully considers the joint distribution and marginal distribution in scattering features,and uses the Brownian distance metric module to make the scattering-topology features more discriminative.Experimental results on both the simulation dataset and the public measured data indicate that STPIL can effectively balance new classes with old classes,and has superior performance to other advanced methods in the incremental recognition of targets.展开更多
A 3D motion and geometric information system of single-antenna radar is proposed,which can be supported by spotlight synthetic aperture radar(SAR) system and inverse SAR(ISAR) system involving relative 3D motion o...A 3D motion and geometric information system of single-antenna radar is proposed,which can be supported by spotlight synthetic aperture radar(SAR) system and inverse SAR(ISAR) system involving relative 3D motion of the rigid target.In this system,applying the geometry invariance of the rigid target,the unknown 3D shape and motion of the radar target can be reconstructed from the 1D range data of some scatterers extracted from the high-resolution range image.Compared with the current 1D-to-3D algorithm,in the proposed algorithm,the requirement of the 1D range data is expanded to incomplete formation involving large angular motion of the target and hence,the quantity of the scatterers and the abundance of 3D motion are enriched.Furthermore,with the three selected affine coordinates fixed,the multi-solution problem of the reconstruction is solved and the technique of nonlinear optimization can be successfully utilized in the system.Two simulations are implemented which verify the higher robustness of the system and the better performance of the 3D reconstruction for the radar target with unknown relative motion.展开更多
The issue of small-angle maneuvering targets inverse synthetic aperture radar(ISAR)imaging has been successfully addressed by popular motion compensation algorithms.However,when the target’s rotational velocity is su...The issue of small-angle maneuvering targets inverse synthetic aperture radar(ISAR)imaging has been successfully addressed by popular motion compensation algorithms.However,when the target’s rotational velocity is sufficiently high during the dwell time of the radar,such compensation algorithms cannot obtain a high quality image.This paper proposes an ISAR imaging algorithm based on keystone transform and deep learning algorithm.The keystone transform is used to coarsely compensate for the target’s rotational motion and translational motion,and the deep learning algorithm is used to achieve a super-resolution image.The uniformly distributed point target data are used as the data set of the training u-net network.In addition,this method does not require estimating the motion parameters of the target,which simplifies the algorithm steps.Finally,several experiments are performed to demonstrate the effectiveness of the proposed algorithm.展开更多
It is potentially useful to perform deception jamming using the digital image synthesizer (DIS) since it can form a two-dimensional (2D) decoy but suffers from multiple decoys ge- neration. Inspired by the intermi...It is potentially useful to perform deception jamming using the digital image synthesizer (DIS) since it can form a two-dimensional (2D) decoy but suffers from multiple decoys ge- neration. Inspired by the intermittent sampling repeater jamming (ISRJ), the generation of inverse synthetic aperture radar (ISAR) decoys is addressed, associated with the DIS and the ISRJ. Radar pulses are sampled intermittently and modulated by the scatter- ing model of a false target by mounting the jammer on a moving platform, and then the jamming signals are retransmitted to the radar and a train of decoys are induced after ISAR imaging. A scattering model of Yak-42 is adopted as the false-target mo- dulation model to verify the effectiveness of the jamming method based on the standard ISAR motion compensation and image for- mation procedure.展开更多
Inverse synthetic aperture radar(ISAR)imaging of the target with the non-rigid body is very important in the field of radar signal processing.In this paper,a motion compensation method combined with the preprocessing ...Inverse synthetic aperture radar(ISAR)imaging of the target with the non-rigid body is very important in the field of radar signal processing.In this paper,a motion compensation method combined with the preprocessing and global technique is proposed to reduce the influence of micro-motion components in the fast time domain,and the micro-Doppler(m-D)signal in the slow time domain is separated by the improved complex-valued empirical-mode decomposition(CEMD)algorithm,which makes the m-D signal more effectively distinguishable from the signal for the main body by translating the target to the Doppler center.Then,a better focused ISAR image of the target with the non-rigid body can be obtained consequently.Results of the simulated and raw data demonstrate the effectiveness of the algorithm.展开更多
Although compressed sensing inverse synthetic aperture radar(ISAR) imaging methods are widely used in radar signal processing, its reconstructing time and memory storage space requirements are very high. The main reas...Although compressed sensing inverse synthetic aperture radar(ISAR) imaging methods are widely used in radar signal processing, its reconstructing time and memory storage space requirements are very high. The main reason is that large scene reconstruction needs a higher dimension of the sensing matrix. To reduce this limitation, a fast high resolution ISAR imaging method,which is based on scene segmentation for random chirp frequencystepped signals, is proposed. The idea of scene segmentation is used to solve the problems aforementioned. In the method,firstly, the observed scene is divided into multiple sub-scenes and then the sub-scenes are reconstructed respectively. Secondly, the whole image scene can be obtained through the stitching of the sub-scenes. Due to the reduction of the dimension of the sensing matrix, the requirement of the memory storage space is reduced substantially. In addition, due to the nonlinear superposition of the reconstructed time of the segmented sub-scenes, the reconstruction time is reduced, and the purpose of fast imaging is achieved.Meanwhile, the feasibility and the related factors which affect the performance of the proposed method are also analyzed, and the selection criterion of the scene segmentation is afforded. Finally,theoretical analysis and simulation results demonstrate the feasibility and effectiveness of the proposed method.展开更多
The rotating micro-motion parts produce micro-Doppler(m-D)effects which severely influence the quality of inverse synthetic aperture radar(ISAR)imaging for complex moving targets.Recently,a method based on short-time ...The rotating micro-motion parts produce micro-Doppler(m-D)effects which severely influence the quality of inverse synthetic aperture radar(ISAR)imaging for complex moving targets.Recently,a method based on short-time Fourier transform(STFT)and L-statistics to remove m-D effects is proposed,which can separate the rigid body parts from interferences introduced by rotating parts.However,during the procedure of removing m-D parts,the useful data of the rigid body parts are also removed together with the m-D interferences.After summing the rest STFT samples,the result will be affected.A novel method is proposed to recover the missing values of the rigid body parts by the particle swarm optimization(PSO)algorithm.For PSO,each particle corresponds to a possible phase estimation of the missing values.The best particle is selected which has the minimal energy of the side lobes according to the best fitness value of particles.The simulation and measured data results demonstrate the effectiveness of the proposed method.展开更多
For ship targets with complex motion,it is difficult for the traditional monostatic inverse synthetic aperture radar(ISAR)imaging to improve the cross-range resolution by increasing of accumulation time.In this paper,...For ship targets with complex motion,it is difficult for the traditional monostatic inverse synthetic aperture radar(ISAR)imaging to improve the cross-range resolution by increasing of accumulation time.In this paper,a distributed ISAR imaging algorithm is proposed to improve the cross-range resolution for the ship target.Multiple stations are used to observe the target in a short time,thereby the effect of incoherence caused by the complex motion of the ship can be reduced.The signal model of ship target with three-dimensional(3-D)rotation is constructed firstly.Then detailed analysis about the improvement of crossrange resolution is presented.Afterward,we propose the methods of parameters estimation to solve the problem of the overlap or gap,which will cause a loss of resolution and is necessary for subsequent processing.Besides,the compressed sensing(CS)method is applied to reconstruct the echoes with gaps.Finally,numerical simulations are presented to verify the effectiveness and the robustness of the proposed algorithm.展开更多
The convergence performance of the minimum entropy auto-focusing(MEA) algorithm for inverse synthetic aperture radar(ISAR) imaging is analyzed by simulation. The results show that a local optimal solution problem ...The convergence performance of the minimum entropy auto-focusing(MEA) algorithm for inverse synthetic aperture radar(ISAR) imaging is analyzed by simulation. The results show that a local optimal solution problem exists in the MEA algorithm. The cost function of the MEA algorithm is not a downward-convex function of multidimensional phases to be compensated. Only when the initial values of the compensated phases are chosen to be near the global minimal point of the entropy function, the MEA algorithm can converge to a global optimal solution. To study the optimal solution problem of the MEA algorithm, a new scheme of entropy function optimization for radar imaging is presented. First, the initial values of the compensated phases are estimated by using the modified Doppler centroid tracking (DCT)algorithm. Since these values are obtained according to the maximum likelihood (ML) principle, the initial phases can be located near the optimal solution values. Then, a fast MEA algorithm is used for the local searching process and the global optimal solution can be obtained. The simulation results show that this scheme can realize the global optimization of the MEA algorithm and can avoid the selection and adjustment of parameters such as iteration step lengths, threshold values, etc.展开更多
The space target imaging is important in the development of space technology.Due to the availability of trajectory information of the space targets and the arising of rapid parallel processing hardware,the back projec...The space target imaging is important in the development of space technology.Due to the availability of trajectory information of the space targets and the arising of rapid parallel processing hardware,the back projection (BP) method has been applied to synthetic aperture radar (SAR) imaging and shows a number of advantages as compared with conventional Fourier-domain imaging algorithms.However,the practical processing shows that the insufficient accuracy of the trajectory information results in the degrading of the imaging results.On the other hand,the autofocusing algorithms for BP imaging are not well developed,which is a bottleneck for the application of BP imaging.Here,an analysis of the effect of trajectory errors on the space target imaging using microlocal technology is presented.Our analysis provides an explicit quantitative relationship between the trajectory errors of the space target and the positioning errors in the reconstructed images.The explicit form of the position errors for some typical trajectory errors is also presented.Numerical simulations demonstrate our theoretical findings.The measured position errors obtained from the reconstructed images are consistent with the analytic errors calculated by using the derived formulas.Our results will be used in the development of effective autofocusing methods for BP imaging.展开更多
Inverse synthetic aperture radar(ISAR)imaging of near-field targets is potentially useful in some specific applications,which makes it very important to efficiently produce highquality image of the near-field target.I...Inverse synthetic aperture radar(ISAR)imaging of near-field targets is potentially useful in some specific applications,which makes it very important to efficiently produce highquality image of the near-field target.In this paper,the simplified target model with uniform linear motion is applied to the near-field target imaging,which overcomes the complexity of the traditional near-field imaging algorithm.According to this signal model,the method based on coordinate conversion and image interpolation combined with the range-Doppler(R-D)algorithm is proposed to correct the near-field distortion problem.Compared with the back-projection(BP)algorithm,the proposed method produces better focused ISAR images of the near-field target,and decreases the computation complexity significantly.Experimental results of the simulated data have demonstrated the effectiveness and robustness of the proposed method.展开更多
The technique of imaging a target with a complicated motion using an Inverse Synthetic Aperture Radar(ISAR) system is an effective tool in the field of radar signal processing. After the translational compensation, th...The technique of imaging a target with a complicated motion using an Inverse Synthetic Aperture Radar(ISAR) system is an effective tool in the field of radar signal processing. After the translational compensation, the received signal reflected from the target can take the form of a multi-component Polynomial Phase Signal(m-PPS), and the high quality ISAR image can be provided via the combination between the estimated parameters of the m-PPS and the Range Instantaneous-Doppler technique(RID). For a target with a high maneuvrability, the occurrence of scatterers Migration Through Resolution Cell(MTRC), caused by the rotational movement could be appearing. That is why the variation in the amplitude of the echo during the time of observation cannot be neglected. The purpose of this study is the parameters estimation of the m-PPS signal with order three in the case of the Time Varying Amplitude(TVA). The Improved-version of the Product High-order Ambiguity Function(IPHAF) with TVA is proposed to improve the quality of the ISAR image compared with traditional techniques based on a constant amplitude;the experimental outcomes confirm that the new IPHAF-TVA method presented in this study is an effective technique to make the ISAR image very clear.展开更多
With the rapid advancement of technology,not only do we need to acquire a clear in-verse synthetic aperture radar(ISAR)image,but also the real size of the target on the imaging plane,so it’s particularly important fo...With the rapid advancement of technology,not only do we need to acquire a clear in-verse synthetic aperture radar(ISAR)image,but also the real size of the target on the imaging plane,so it’s particularly important for the ISAR to rescale the images.That is,the ISAR image which is in the range-Doppler domain is converted into the range-azimuth domain.Actually,the key point to solving the problem is to estimate the rotation parameters.In this paper,a new scheme to rescale the images is proposed.For the sake of solving the problem of two-dimensional image blur and target high-speed,the instantaneous range instantaneous Doppler(IRID)method is used to obtain ISAR images,and the rotation parameters are estimated by comparing the rotation correlation of the two images.Using this method,the error of the estimated rotation parameters is greatly reduced,so that the target can be rescaled accurately.The simulation results verify the ef-fectiveness of the proposed algorithm.展开更多
基金supported by the National Natural Science Foundation of China(6157138861601398)the National Natural Science Foundation of Hebei Province(F2016203251)
文摘Traditional inverse synthetic aperture radar(ISAR)imaging methods for maneuvering targets have low resolution and poor capability of noise suppression. An ISAR imaging method of maneuvering targets based on phase retrieval is proposed,which can provide a high-resolution and focused map of the spatial distribution of scatterers on the target. According to theoretical derivation, the modulus of raw data from the maneuvering target is not affected by radial motion components for ISAR imaging system, so the phase retrieval algorithm can be used for ISAR imaging problems. However, the traditional phase retrieval algorithm will be not applicable to ISAR imaging under the condition of random noise. To solve this problem, an algorithm is put forward based on the range Doppler(RD) algorithm and oversampling smoothness(OSS) phase retrieval algorithm. The algorithm captures the target information in order to reduce the influence of the random phase on ISAR echoes, and then applies OSS for focusing imaging based on prior information of the RD algorithm. The simulated results demonstrate the validity of this algorithm, which cannot only obtain high resolution imaging for high speed maneuvering targets under the condition of random noise, but also substantially improve the success rate of the phase retrieval algorithm.
基金supported by the National Natural Science Foundation of China(6127144261401481)
文摘For real-time jamming signal generation in deceiving inverse synthetic aperture radar(ISAR),the target characteristics modulation is always processed in the expensive field programmable gate array(FPGA).Due to the large computational complexity of the traditional modulating operation,the size and structure of simulated false-target are limited.With regard to the principle of dechirping in range compression of linear frequency modulated(LFM) radar,a novel algorithm named "inverse dechirping" is proposed for target characteristics modulation.This algorithm only needs one complex multiplier in the FPGA to generate the jamming signal when the radar signal is intercepted,which can be obtained by multiplication of radar signal samplings and the equivalent dechirped target echo in the time domain.As the complex synthesis of dechirped target echo can be realized by cheap digital signal processor(DSP) within the interpulse time,the overall cost of the jamming equipment will be reduced and the false-target size will not be limited by the scale of FPGA.Numerical simulations are performed to verify the correctness and effectiveness of the proposed algorithm.
文摘Pointing estimation for spacecraft using Inverse Synthetic Aperture Radar(ISAR)images plays a significant role in space situational awareness and surveillance.However,feature extraction and cross-range scaling of ISAR images create bottlenecks that limit performances of current estimation methods.Especially,the emergence of staring imaging satellites,characterized by complex kinematic behaviors,presents a novel challenge to this task.To address these issues,this article proposes a pointing estimation method based on Convolutional Neural Networks(CNNs)and a numerical optimization algorithm.A satellite’s main axis,which is extracted from ISAR images by a proposed Semantic Axis Region Regression Net(SARRN),is chosen for investigation in this article due to its unique structure.Specifically,considering the kinematic characteristic of the staring satellite,an ISAR imaging model is established to bridge the target pointing and the extracted axes.Based on the imaging model,pointing estimation and cross-range scaling can be described as a maximum likelihood estimation problem,and an iterative optimization algorithm modified by using the strategy of random sampling-consistency check and weighted least squares is proposed to solve this problem.Finally,the pointing of targets and the cross-range scaling factors of ISAR images are obtained.Simulation experiments based on actual satellite orbital parameters verify the effectiveness of the proposed method.This work can improve the performance of satellite reconnaissance warning,while accurate cross-range scaling can provide a basis for subsequent data processes such as 3D reconstruction and attitude estimation.
文摘The continuous emergence of new targets in open scenarios leads to a substantial decrease in the performance of Inverse Synthetic Aperture Radar(ISAR)recognition systems.Also,data scarcity further exacerbates the challenge of identifying new classes of ISAR targets.In this paper,a few-shot incremental target recognition framework based on Scattering-Topology Properties(STPIL)is proposed.Specifically,STPIL extracts scattering-topology properties of ISAR targets as recognition features.Meanwhile,the pseudo-incremental training strategy effectively alleviates the algorithm’s forgetting of old knowledge,and improves compatibility with new classes.Besides,a feature embedding network,with few parameters,is designed based on the graph neural network.This embedding network is highly adaptable to changes in data distribution.Additionally,STPIL fully considers the joint distribution and marginal distribution in scattering features,and uses the Brownian distance metric module to make the scattering-topology features more discriminative.Experimental results on both the simulation dataset and the public measured data indicate that STPIL can effectively balance new classes with old classes,and has superior performance to other advanced methods in the incremental recognition of targets.
基金supported by the National Natural Science Foundation of China (60572093)the Doctoral Program of Higher Education(20050004016)the Outstanding Doctoral Science Innovation Foundation of Beijing Jiaotong University (141095522)
文摘A 3D motion and geometric information system of single-antenna radar is proposed,which can be supported by spotlight synthetic aperture radar(SAR) system and inverse SAR(ISAR) system involving relative 3D motion of the rigid target.In this system,applying the geometry invariance of the rigid target,the unknown 3D shape and motion of the radar target can be reconstructed from the 1D range data of some scatterers extracted from the high-resolution range image.Compared with the current 1D-to-3D algorithm,in the proposed algorithm,the requirement of the 1D range data is expanded to incomplete formation involving large angular motion of the target and hence,the quantity of the scatterers and the abundance of 3D motion are enriched.Furthermore,with the three selected affine coordinates fixed,the multi-solution problem of the reconstruction is solved and the technique of nonlinear optimization can be successfully utilized in the system.Two simulations are implemented which verify the higher robustness of the system and the better performance of the 3D reconstruction for the radar target with unknown relative motion.
基金This work was supported by the National Natural Science Foundation of China(61571388,61871465,62071414)the Project of Introducing Overseas Students in Hebei Province(C20200367).
文摘The issue of small-angle maneuvering targets inverse synthetic aperture radar(ISAR)imaging has been successfully addressed by popular motion compensation algorithms.However,when the target’s rotational velocity is sufficiently high during the dwell time of the radar,such compensation algorithms cannot obtain a high quality image.This paper proposes an ISAR imaging algorithm based on keystone transform and deep learning algorithm.The keystone transform is used to coarsely compensate for the target’s rotational motion and translational motion,and the deep learning algorithm is used to achieve a super-resolution image.The uniformly distributed point target data are used as the data set of the training u-net network.In addition,this method does not require estimating the motion parameters of the target,which simplifies the algorithm steps.Finally,several experiments are performed to demonstrate the effectiveness of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(6137217061401491)
文摘It is potentially useful to perform deception jamming using the digital image synthesizer (DIS) since it can form a two-dimensional (2D) decoy but suffers from multiple decoys ge- neration. Inspired by the intermittent sampling repeater jamming (ISRJ), the generation of inverse synthetic aperture radar (ISAR) decoys is addressed, associated with the DIS and the ISRJ. Radar pulses are sampled intermittently and modulated by the scatter- ing model of a false target by mounting the jammer on a moving platform, and then the jamming signals are retransmitted to the radar and a train of decoys are induced after ISAR imaging. A scattering model of Yak-42 is adopted as the false-target mo- dulation model to verify the effectiveness of the jamming method based on the standard ISAR motion compensation and image for- mation procedure.
基金supported by the National Natural Science Foundation of China(61871146)the Fundamental Research Funds for the Central Universitiesthe State Key Laboratory of Millimeter Waves(K202022)。
文摘Inverse synthetic aperture radar(ISAR)imaging of the target with the non-rigid body is very important in the field of radar signal processing.In this paper,a motion compensation method combined with the preprocessing and global technique is proposed to reduce the influence of micro-motion components in the fast time domain,and the micro-Doppler(m-D)signal in the slow time domain is separated by the improved complex-valued empirical-mode decomposition(CEMD)algorithm,which makes the m-D signal more effectively distinguishable from the signal for the main body by translating the target to the Doppler center.Then,a better focused ISAR image of the target with the non-rigid body can be obtained consequently.Results of the simulated and raw data demonstrate the effectiveness of the algorithm.
基金supported by the National Natural Science Foundation of China(61671469)
文摘Although compressed sensing inverse synthetic aperture radar(ISAR) imaging methods are widely used in radar signal processing, its reconstructing time and memory storage space requirements are very high. The main reason is that large scene reconstruction needs a higher dimension of the sensing matrix. To reduce this limitation, a fast high resolution ISAR imaging method,which is based on scene segmentation for random chirp frequencystepped signals, is proposed. The idea of scene segmentation is used to solve the problems aforementioned. In the method,firstly, the observed scene is divided into multiple sub-scenes and then the sub-scenes are reconstructed respectively. Secondly, the whole image scene can be obtained through the stitching of the sub-scenes. Due to the reduction of the dimension of the sensing matrix, the requirement of the memory storage space is reduced substantially. In addition, due to the nonlinear superposition of the reconstructed time of the segmented sub-scenes, the reconstruction time is reduced, and the purpose of fast imaging is achieved.Meanwhile, the feasibility and the related factors which affect the performance of the proposed method are also analyzed, and the selection criterion of the scene segmentation is afforded. Finally,theoretical analysis and simulation results demonstrate the feasibility and effectiveness of the proposed method.
基金the National Natural Science Foundation of China(61622107,61871146).
文摘The rotating micro-motion parts produce micro-Doppler(m-D)effects which severely influence the quality of inverse synthetic aperture radar(ISAR)imaging for complex moving targets.Recently,a method based on short-time Fourier transform(STFT)and L-statistics to remove m-D effects is proposed,which can separate the rigid body parts from interferences introduced by rotating parts.However,during the procedure of removing m-D parts,the useful data of the rigid body parts are also removed together with the m-D interferences.After summing the rest STFT samples,the result will be affected.A novel method is proposed to recover the missing values of the rigid body parts by the particle swarm optimization(PSO)algorithm.For PSO,each particle corresponds to a possible phase estimation of the missing values.The best particle is selected which has the minimal energy of the side lobes according to the best fitness value of particles.The simulation and measured data results demonstrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(61871146)the Fundamental Research Funds for the Central Universities(FRFCU5710093720)。
文摘For ship targets with complex motion,it is difficult for the traditional monostatic inverse synthetic aperture radar(ISAR)imaging to improve the cross-range resolution by increasing of accumulation time.In this paper,a distributed ISAR imaging algorithm is proposed to improve the cross-range resolution for the ship target.Multiple stations are used to observe the target in a short time,thereby the effect of incoherence caused by the complex motion of the ship can be reduced.The signal model of ship target with three-dimensional(3-D)rotation is constructed firstly.Then detailed analysis about the improvement of crossrange resolution is presented.Afterward,we propose the methods of parameters estimation to solve the problem of the overlap or gap,which will cause a loss of resolution and is necessary for subsequent processing.Besides,the compressed sensing(CS)method is applied to reconstruct the echoes with gaps.Finally,numerical simulations are presented to verify the effectiveness and the robustness of the proposed algorithm.
基金The Natural Science Foundation of Jiangsu Province(NoBK2008429)Open Research Foundation of State Key Laboratory ofMillimeter Waves of Southeast University(NoK200903)+1 种基金China Postdoctoral Science Foundation(No20080431126)Jiangsu Province Postdoctoral Science Foundation(No2007337)
文摘The convergence performance of the minimum entropy auto-focusing(MEA) algorithm for inverse synthetic aperture radar(ISAR) imaging is analyzed by simulation. The results show that a local optimal solution problem exists in the MEA algorithm. The cost function of the MEA algorithm is not a downward-convex function of multidimensional phases to be compensated. Only when the initial values of the compensated phases are chosen to be near the global minimal point of the entropy function, the MEA algorithm can converge to a global optimal solution. To study the optimal solution problem of the MEA algorithm, a new scheme of entropy function optimization for radar imaging is presented. First, the initial values of the compensated phases are estimated by using the modified Doppler centroid tracking (DCT)algorithm. Since these values are obtained according to the maximum likelihood (ML) principle, the initial phases can be located near the optimal solution values. Then, a fast MEA algorithm is used for the local searching process and the global optimal solution can be obtained. The simulation results show that this scheme can realize the global optimization of the MEA algorithm and can avoid the selection and adjustment of parameters such as iteration step lengths, threshold values, etc.
基金supported by the National Natural Science Foundation of China(No.61871217)the Foundation of Graduate Innovation Center in Nanjing University of Aeronautics and Astronautics(No.kfjj20170404),China
文摘The space target imaging is important in the development of space technology.Due to the availability of trajectory information of the space targets and the arising of rapid parallel processing hardware,the back projection (BP) method has been applied to synthetic aperture radar (SAR) imaging and shows a number of advantages as compared with conventional Fourier-domain imaging algorithms.However,the practical processing shows that the insufficient accuracy of the trajectory information results in the degrading of the imaging results.On the other hand,the autofocusing algorithms for BP imaging are not well developed,which is a bottleneck for the application of BP imaging.Here,an analysis of the effect of trajectory errors on the space target imaging using microlocal technology is presented.Our analysis provides an explicit quantitative relationship between the trajectory errors of the space target and the positioning errors in the reconstructed images.The explicit form of the position errors for some typical trajectory errors is also presented.Numerical simulations demonstrate our theoretical findings.The measured position errors obtained from the reconstructed images are consistent with the analytic errors calculated by using the derived formulas.Our results will be used in the development of effective autofocusing methods for BP imaging.
基金supported by the National Natural Science Foundation of China(61871146).
文摘Inverse synthetic aperture radar(ISAR)imaging of near-field targets is potentially useful in some specific applications,which makes it very important to efficiently produce highquality image of the near-field target.In this paper,the simplified target model with uniform linear motion is applied to the near-field target imaging,which overcomes the complexity of the traditional near-field imaging algorithm.According to this signal model,the method based on coordinate conversion and image interpolation combined with the range-Doppler(R-D)algorithm is proposed to correct the near-field distortion problem.Compared with the back-projection(BP)algorithm,the proposed method produces better focused ISAR images of the near-field target,and decreases the computation complexity significantly.Experimental results of the simulated data have demonstrated the effectiveness and robustness of the proposed method.
基金supported in part by the National Natural Science Foundation of China (No. 61871146)。
文摘The technique of imaging a target with a complicated motion using an Inverse Synthetic Aperture Radar(ISAR) system is an effective tool in the field of radar signal processing. After the translational compensation, the received signal reflected from the target can take the form of a multi-component Polynomial Phase Signal(m-PPS), and the high quality ISAR image can be provided via the combination between the estimated parameters of the m-PPS and the Range Instantaneous-Doppler technique(RID). For a target with a high maneuvrability, the occurrence of scatterers Migration Through Resolution Cell(MTRC), caused by the rotational movement could be appearing. That is why the variation in the amplitude of the echo during the time of observation cannot be neglected. The purpose of this study is the parameters estimation of the m-PPS signal with order three in the case of the Time Varying Amplitude(TVA). The Improved-version of the Product High-order Ambiguity Function(IPHAF) with TVA is proposed to improve the quality of the ISAR image compared with traditional techniques based on a constant amplitude;the experimental outcomes confirm that the new IPHAF-TVA method presented in this study is an effective technique to make the ISAR image very clear.
基金supported in part by the National Natural Sci-ence Foundation of China(No.61875070)in part by the Science and Technology Development Plan of Jilin Province(No.20180201032GX)+1 种基金in part by the Science and Techno-logy Project of Education Department of Jilin Province(No.JJKH20190110KJ)in part by the Graduate In-novation Fund of Jilin University(No.101832020CX171).
文摘With the rapid advancement of technology,not only do we need to acquire a clear in-verse synthetic aperture radar(ISAR)image,but also the real size of the target on the imaging plane,so it’s particularly important for the ISAR to rescale the images.That is,the ISAR image which is in the range-Doppler domain is converted into the range-azimuth domain.Actually,the key point to solving the problem is to estimate the rotation parameters.In this paper,a new scheme to rescale the images is proposed.For the sake of solving the problem of two-dimensional image blur and target high-speed,the instantaneous range instantaneous Doppler(IRID)method is used to obtain ISAR images,and the rotation parameters are estimated by comparing the rotation correlation of the two images.Using this method,the error of the estimated rotation parameters is greatly reduced,so that the target can be rescaled accurately.The simulation results verify the ef-fectiveness of the proposed algorithm.