提出了一种基于PIC16F877A微控制器和CC2500射频收发器芯片的低功耗、低成本RFID(Radio Frequency I-dentification,无线射频识别)局域定位系统设计方法,介绍了系统的定位工作原理、主要硬件电路模块及定位算法的设计和实现。采用基于...提出了一种基于PIC16F877A微控制器和CC2500射频收发器芯片的低功耗、低成本RFID(Radio Frequency I-dentification,无线射频识别)局域定位系统设计方法,介绍了系统的定位工作原理、主要硬件电路模块及定位算法的设计和实现。采用基于序列号对时隙数运算的排序算法有效解决了多标签识别碰撞的问题,基于射频辐射强度(Received Signal Strength Indication,RSSI)和圆周定位算法实现了基于RFID多标签系统的平面定位。实验测试表明,这种射频定位方法能够实现一定精度下的无线局域定位的功能。展开更多
Addressing the challenges of passive Radio Frequency Identification(RFID)indoor localization technology in Non-Line-of-Sight(NLoS)and multipath environments,this paper presents an innovative approach by introducing a ...Addressing the challenges of passive Radio Frequency Identification(RFID)indoor localization technology in Non-Line-of-Sight(NLoS)and multipath environments,this paper presents an innovative approach by introducing a combined technology integrating an improved Kalman Filter with Space Domain Phase Difference of Arrival(SD-PDOA)and Received Signal Strength Indicator(RSSI).This methodology utilizes the distinct channel characteristics in multipath and NLoS contexts to effectively filter out interference and accurately extract localization information,thereby facilitating high precision and stability in passive RFID localization.The efficacy of this approach is demonstrated through detailed simulations and empirical tests conducted on a custom-built experimental platform consisting of passive RFID tags and an R420 reader.The findings are significant:in NLoS conditions,the four-antenna localization system achieved a notable localization accuracy of 0.25 m at a distance of 5 m.In complex multipath environments,this system achieved a localization accuracy of approximately 0.5 m at a distance of 5 m.When compared to conventional passive localization methods,our proposed solution exhibits a substantial improvement in indoor localization accuracy under NLoS and multipath conditions.This research provides a robust and effective technical solution for high-precision passive indoor localization in the Internet of Things(IoT)system,marking a significant advancement in the field.展开更多
文摘提出了一种基于PIC16F877A微控制器和CC2500射频收发器芯片的低功耗、低成本RFID(Radio Frequency I-dentification,无线射频识别)局域定位系统设计方法,介绍了系统的定位工作原理、主要硬件电路模块及定位算法的设计和实现。采用基于序列号对时隙数运算的排序算法有效解决了多标签识别碰撞的问题,基于射频辐射强度(Received Signal Strength Indication,RSSI)和圆周定位算法实现了基于RFID多标签系统的平面定位。实验测试表明,这种射频定位方法能够实现一定精度下的无线局域定位的功能。
基金supported in part by the Joint Project of National Natural Science Foundation of China(U22B2004,62371106)in part by China Mobile Research Institute&X-NET(Project Number:2022H002)+6 种基金in part by the Pre-Research Project(31513070501)in part by National Key R&D Program(2018AAA0103203)in part by Guangdong Provincial Research and Development Plan in Key Areas(2019B010141001)in part by Sichuan Provincial Science and Technology Planning Program of China(2022YFG0230,2023YFG0040)in part by the Fundamental Enhancement Program Technology Area Fund(2021-JCJQ-JJ-0667)in part by the Joint Fund of ZF and Ministry of Education(8091B022126)in part by Innovation Ability Construction Project for Sichuan Provincial Engineering Research Center of Communication Technology for Intelligent IoT(2303-510109-04-03-318020).
文摘Addressing the challenges of passive Radio Frequency Identification(RFID)indoor localization technology in Non-Line-of-Sight(NLoS)and multipath environments,this paper presents an innovative approach by introducing a combined technology integrating an improved Kalman Filter with Space Domain Phase Difference of Arrival(SD-PDOA)and Received Signal Strength Indicator(RSSI).This methodology utilizes the distinct channel characteristics in multipath and NLoS contexts to effectively filter out interference and accurately extract localization information,thereby facilitating high precision and stability in passive RFID localization.The efficacy of this approach is demonstrated through detailed simulations and empirical tests conducted on a custom-built experimental platform consisting of passive RFID tags and an R420 reader.The findings are significant:in NLoS conditions,the four-antenna localization system achieved a notable localization accuracy of 0.25 m at a distance of 5 m.In complex multipath environments,this system achieved a localization accuracy of approximately 0.5 m at a distance of 5 m.When compared to conventional passive localization methods,our proposed solution exhibits a substantial improvement in indoor localization accuracy under NLoS and multipath conditions.This research provides a robust and effective technical solution for high-precision passive indoor localization in the Internet of Things(IoT)system,marking a significant advancement in the field.