狭长空间定位问题普遍存在于室内定位应用场景中,虽然传统基于RSSI(Received Signal Strength Indicator)测距的定位方法简便易行,但是狭长空间RSS的波动性以及人体对无线信号的遮挡会严重降低人员定位精度。本文在分析了人体穿透损...狭长空间定位问题普遍存在于室内定位应用场景中,虽然传统基于RSSI(Received Signal Strength Indicator)测距的定位方法简便易行,但是狭长空间RSS的波动性以及人体对无线信号的遮挡会严重降低人员定位精度。本文在分析了人体穿透损耗对狭长空间定位影响的基础上,提出将RSSI测距与扩展卡尔曼滤波定位算法组合实现定位,即在中等尺度(5λ-50λ)内采用基于人体穿透损耗模型的RSSI测距方法定位,在大尺度(〉50λ)内采用基于人体遮挡修正模型的扩展卡尔曼滤波算法定位。实验表明该方法在狭长空间的定位精度明显优于RSSI测距定位方法。展开更多
文摘狭长空间定位问题普遍存在于室内定位应用场景中,虽然传统基于RSSI(Received Signal Strength Indicator)测距的定位方法简便易行,但是狭长空间RSS的波动性以及人体对无线信号的遮挡会严重降低人员定位精度。本文在分析了人体穿透损耗对狭长空间定位影响的基础上,提出将RSSI测距与扩展卡尔曼滤波定位算法组合实现定位,即在中等尺度(5λ-50λ)内采用基于人体穿透损耗模型的RSSI测距方法定位,在大尺度(〉50λ)内采用基于人体遮挡修正模型的扩展卡尔曼滤波算法定位。实验表明该方法在狭长空间的定位精度明显优于RSSI测距定位方法。